
BEDIENUNGSANLEITUNG

EB 8389

Originalanleitung

Ventildiagnose EXPERTplus

Bauart 3730 und 3731 · Elektropneumatischer Stellungsregler Typ 3730-2, 3730-3, 3730-4, 3730-5 und Typ 3731-3, 3731-5

Firmwareversion 1.5x und 1.6x

Hinweise zur vorliegenden Einbau- und Bedienungsanleitung

Diese Einbau- und Bedienungsanleitung (EB) leitet zur sicheren Montage und Bedienung an. Die Hinweise und Anweisungen dieser EB sind verbindlich für den Umgang mit SAMSON-Geräten.

- → Für die sichere und sachgerechte Anwendung diese EB vor Gebrauch sorgfältig lesen und für späteres Nachschlagen aufbewahren.
- → Bei Fragen, die über den Inhalt dieser EB hinausgehen, After Sales Service von SAMSON kontaktieren (aftersalesservice@samson.de).

Die gerätebezogenen Einbau- und Bedienungsanleitungen liegen den Geräten bei. Die jeweils aktuellsten Dokumente stehen im Internet unter www.samson.de > Service & Support > Downloads > Dokumentation zur Verfügung.

Hinweise und ihre Bedeutung

▲ GEFAHR

Gefährliche Situationen, die zum Tod oder zu schweren Verletzungen führen

A WARNUNG

Situationen, die zum Tod oder zu schweren Verletzungen führen können

Sachschäden und Fehlfunktionen

Informative Erläuterungen

Praktische Empfehlungen

1	Sicherheitshinweise und Schutzmaßnahmen	7
1.1	Hinweise zu möglichen Sachschäden	9
2	Bedienung	11
2.1	Vor-Ort-Bedienung	11
2.2	Bedienung über TROVIS-VIEW	11
2.3	Unterschiede zwischen den Firmwareversionen	12
2.4	Inbetriebnahme	12
2.4.1	Referenzlauf	14
2.5	Diagnosefunktionen	
2.5.1	Anwendungsart	
2.5.2	Auswertung	
3	Überwachung	
3.1	Statusmeldungen	
3.1.1	Rücksetzen von Statusmeldungen	
3.2 3.2.1	Sammelstatus	
	Sammelstatus am Störmeldeausgang	
3.3	Protokollierung	
4	Beobachterfunktionen	
4.1	Auf/Zu-Ventil	
4.1.1 4.1.2	Auf/Zu-Diagnose Auswertung und Überwachung	
4.1.3	Einzelnes Rücksetzen	
4.2	Datenlogger	
4.2.1	Permanente Funktionsweise	
4.2.2	Getriggerte Funktionsweise	32
4.3	Histogramm Ventilstellung x	
4.3.1	Auswertung und Überwachung	
4.3.2	Einzelnes Rücksetzen	
4.4	Histogramm Regeldifferenz e	
4.4.1 4.4.2	Auswertung und Überwachung Einzelnes Rücksetzen	
4.4.2 4.5	Histogramm Zyklenzähler	
4.5 4.5.1	Auswertung und Überwachung	
4.5.2	Einzelnes Rücksetzen	

Inhalt

4.6	Diagramm Stellsignal y Stationär	49
4.6.1	Auswertung und Überwachung	
4.6.2	Einzelnes Rücksetzen	51
4.7	Diagramm Stellsignal y Hysterese	53
4.7.1	Auswertung und Überwachung	55
4.7.2	Einzelnes Rücksetzen	56
4.8	Endlagentrend	59
4.8.1	Auswertung und Überwachung	60
4.8.2	Einzelnes Rücksetzen	61
5	Testfunktionen	61
5.1	Stellsignal y Stationär	63
5.1.1	Auswertung und Überwachung	65
5.1.2	Einzelnes Rücksetzen	65
5.2	Stellsignal y Hysterese	67
5.2.1	Auswertung und Überwachung	
5.2.2	Einzelnes Rücksetzen	69
5.3	Statische Kennlinie	70
5.3.1	Einzelnes Rücksetzen	71
5.4	Teilhubtest (PST)	75
5.4.1	Start durch Auf/Zu-Ventil	80
5.4.2	Start durch Binäreingang	
5.4.3	Auswertung und Überwachung	
5.4.4	Einzelnes Rücksetzen	
5.4.5	Sprungantwort	
5.5	Vollhubtest (FST)	
5.6.1	Auswertung und Überwachung	
5.6.2	Einzelnes Rücksetzen	
6	Dynamische HART®-Variablen	
7	Leckagesensor	93
7.1	Inbetriebnahme des Leckagesensors	94
7.1.1	Referenztest	
7.1.2	Wiederholungstest	97
7.2	Kurzzeitbeobachtung	
7.2.1	Einzelnes Rücksetzen	104
7.3	Langzeitbeobachtung	104
	· ·	

7.3.1	Einzelnes Rücksetzen	104
7.4	Pegelbeobachtung	105
7.4.1	Einzelnes Rücksetzen	
8	Binäreingang	106
8.1	Typ 3730-2/3 und 3731-3	106
8.2	Тур 3730-4	107
8.3	Typ 3730-5 und 3731-5	107
9	Anhang	109
9.1	Codeliste	109
9.1.1	PROFIBUS-Parameter (Typ 3730-4)	115
9.1.2	FOUNDATION™-Fieldbus-Parameter (Typ 3730-5, 3731-5)	118
9.2	Fehlermeldungen und Abhilfe	121
9.3	Netzausfallsicher gespeicherte Diagnose-Datenpunkte	126
7.5		
9.4	Ermittlung von Teilhubtest-Rampenzeiten	

Sicherheitshinweise und Schutzmaßnahmen

Bestimmungsgemäße Verwendung

EXPERTplus ist eine im Stellungsregler integrierte Diagnosefirmware, die eine vorbeugende, zustandsorientierte Wartung von Stellventilen mit pneumatischem Antrieb erlaubt.

EXPERTplus erfasst Stellventilzustände bei laufendem Prozess (Automatikbetrieb) und gibt Hinweise auf erforderliche Instandhaltungsarbeiten. Zusätzlich werden zahlreiche Tests im Handbetrieb zur gezielten Fehlerortung angeboten.

Die Diagnosefunktionalitäten von EXPERTplus sind vollständig im Stellungsregler integriert. Das Sammeln der Diagnosedaten sowie die Auswertung und das Speichern erfolgt im Stellungsregler. Aus der Auswertung werden klassifizierte Statusmeldungen über den Stellventilzustand generiert.

Vernünftigerweise vorhersehbare Fehlanwendung

Bei Durchführung von Testfunktionen folgt die Ventilposition nicht dem Sollwert, sondern den Vorgaben der Testprozedur. Testfunktionen dürfen daher nur gestartet werden, wenn der Anlagenzustand dies auch zulässt.

Qualifikation des Bedienpersonals

Anbaugeräte dürfen nur von Fachpersonal konfiguriert und parametriert werden. Fachpersonal im Sinne dieser Bedienungsanleitung sind Personen, die aufgrund ihrer fachlichen Ausbildung, ihrer Kenntnisse und Erfahrungen sowie der Kenntnis der einschlägigen Normen, die ihnen übertragenen Arbeiten beurteilen und mögliche Gefahren erkennen können.

Persönliche Schutzausrüstung

Es ist keine Schutzausrüstung erforderlich.

Änderungen und sonstige Modifikationen

Änderungen und sonstige Modifikationen des Produkts sind durch SAMSON nicht autorisiert. Sie erfolgen ausschließlich auf eigene Gefahr und können unter anderem zu Sicherheitsrisiken führen sowie dazu, dass das Produkt nicht mehr den für seine Verwendung erforderlichen Voraussetzungen entspricht.

Schutzeinrichtungen

Im Offlinemodus hat die Software keinen Einfluss auf das angeschlossene Anbaugerät.

Warnung vor Restgefahren

Die Software hat im Onlinemodus direkten Einfluss auf das angeschlossene Anbaugerät und damit auf das Stellventil. Um Personen- oder Sachschäden vorzubeugen, müssen Betreiber und Bedienpersonal Gefährdungen, die am Stellventil vom Durchflussmedium und Betriebsdruck sowie vom Stelldruck und von beweglichen Teilen ausgehen können, durch geeignete Maßnahmen verhindern. Dazu müssen Betreiber und Bedienpersonal alle Gefahrenhinweise, Warnhinweise und Hinweise der mitgeltenden Dokumente befolgen.

Sorgfaltspflicht des Betreibers

Der Betreiber ist für den einwandfreien Betrieb sowie für die Einhaltung der Sicherheitsvorschriften verantwortlich. Der Betreiber ist verpflichtet, dem Bedienpersonal diese Bedienungsanleitung und die mitgeltenden Dokumente zur Verfügung zu stellen und das Bedienpersonal in der sachgerechten Bedienung zu unterweisen. Weiterhin muss der Betreiber sicherstellen, dass das Bedienpersonal oder Dritte nicht gefährdet werden.

Sorgfaltspflicht des Bedienpersonals

Das Bedienpersonal muss mit der vorliegenden Bedienungsanleitung und mit den mitgeltenden Dokumenten vertraut sein und sich an die darin aufgeführten Gefahrenhinweise, Warnhinweise und Hinweise halten. Darüber hinaus muss das Bedienpersonal mit den geltenden Vorschriften bezüglich Arbeitssicherheit und Unfallverhütung vertraut sein und diese einhalten

Mitgeltende Normen und Richtlinien

Keine.

Mitgeltende Dokumente

Folgende Dokumente gelten in Ergänzung zu dieser Bedienungsanleitung:

 Einbau- und Bedienungsanleitung (EB), Sicherheitshandbuch (SH) und Konfigurationshinweise (KH) für angeschlossenes Anbaugerät:

```
Typ 3730-2: ► EB 8384-2, ► SH 8384-2

Typ 3730-3: ► EB 8384-3, ► SH 8384-3, ► KH 8384-3

Typ 3730-4: ► EB 8384-4, ► SH 8384-4, ► KH 8384-4

Typ 3730-5: ► EB 8384-5, ► SH 8384-5, ► KH 8384-5

Typ 3731-3: ► EB 8387-3, ► SH 8387-3, ► KH 8384-3

Typ 3731-5: ► EB 8387-5, ► SH 8387-5, ► KH 8387-5
```

- EBs für zugehöriges Stellventil (Antrieb, Ventil und weitere Anbaugeräte)

1.1 Hinweise zu möglichen Sachschäden

9 HINWEIS

Fehlfunktion des Stellventils durch nicht anwendungsgerechte Parametrierung und Konfiguration!

Die Einstellungen der Ventildiagnose EXPERTplus können über die SAMSON-Software TROVIS-VIEW vorgenommen werden. Im Online-Modus dieser Software wirken sich Konfiguration und Parametrierung unmittelbar auf das angeschlossene Anbaugerät und damit auf das Stellventil aus.

→ Online-Modus nur dann aktivieren, wenn Konfigurationen, Parametrierungen und Messwerte vom Anbaugerät oder in das Anbaugerät übertragen werden sollen.

Funktionsübersicht

Regelbetrieb

Statistik erfordert keine Konfiguration

Histogramm Ventilstellung x
Kapitel 4.3

Histogramm Regeldifferenze
Kapitel 4.4

Histogramm Zyklenzähler Kapitel 4.5

В

Stellsignal y B
Stationär T
Kapitel 4.6
Kapitel 5.1

Endlagentrend **B**Kapitel 4.8

Diagnose erfordert Konfiguration

Datenlogger **B** Kapitel 4.2

Stangenabdichtung Stopfbuchse Kapitel 4.5

Stellsignal y T Stationär Kapitel 5.1

Stellsignal y B Hysterese T Kapitel 4.7 Kapitel 5.2

Statische T Kennlinie Kapitel 5.3

Vollhubtest (FST) 1 Kapitel 5.5

Leckagesensor **T** Kapitel 7

Auf/Zu-Betrieb

Statistik erfordert keine Konfiguration

Histogramm Ventilstellung x Kapitel 4.3

Histogramm Re- **B** geldifferenz e Kapitel 4.4

Histogramm B
Zyklenzähler
Kapitel 4.5

Endlagentrend **B** Kapitel 4.8

Diagnose erfordert Konfiguration

Auf/Zu- B Diagnose Kapitel 4.1

Datenlogger **B** Kapitel 4.2

Stangenabdich- B tung Stopfbuchse Kapitel 4.5

Statische T Kennlinie Kapitel 5.3

Teilhubtest (PST) B
Kapitel 5.4

Vollhubtest (FST) **T** Kapitel 5.5

Leckagesensor **T** Kapitel 7

Infos:

- Die Indices haben folgende Bedeutung: **B** = Beobachterfunktion, **T** = Testfunktion
- Rot umrandete Funktionen erfordern eine Initialisierung mit Referenzlauf
- Grau hinterlegte Funktionen k\u00f6nnen wenn sie regelm\u00e4\u00dfig durchgef\u00fchrt werden die Funktionsf\u00e4higkeit von Schutzeinrichtungen gem\u00e4\u00df DIN EN 61508/61511 optimieren.

2 Bedienung

Bedienung über TROVIS-VIEW/DD/DTM/eDD

EXPERTplus erlaubt eine komfortable Darstellung und Parametrierung mit der SAMSON-Software TROVIS-VIEW oder über DD/ DTM/eDD.

- TROVIS-VIEW · SAMSON-Bedienoberfläche zur Konfiguration und Parametrierung verschiedener SAMSON-Geräte
- DTM · Device Type Manager Festlegung der Geräte- und Kommunikationseigenschaften
- DD/eDD · Device Description/Enhanced Device Description

i Info

Damit Konfigurationen und Parametrierungen wirksam werden, müssen die Daten in den Stellungsregler übertragen werden.

2.1 Vor-Ort-Bedienung

Einige Parameter können nicht nur über die Bedienoberfläche, sondern auch am Stellungsregler eingestellt werden. Eine detaillierte Auflistung aller am Stellungsregler einstellbaren Parameter enthält die Standard-Anleitung des Stellungsreglers, vgl. Abschnitt "Mitgeltende Dokumente" auf Seite 8.

2.2 Bedienung über TROVIS-VIEW

In der vorliegenden Bedienungsanleitung wird die Bedienung über TROVIS-VIEW beschrieben. Es gelten nachfolgende Festlegungen:

- Die Werkseinstellung von Parametern steht in eckigen Klammern [].
- Statusklassifikationen in runden Klammern () stehen nicht bei allen Stellungsreglern zur Auswahl.
- Die Bedienung bezieht sich auf die Benutzerebene "Spezialist".

i Info

Die Installation und Bedienung der Software TROVIS-VIEW ist ausführlich in der Bedienungsanleitung ► EB 6661 beschrieben. Die Bedienungsanleitung liegt im Internet und im Hilfemenii von TROVIS-VIEW ab

Parameter können über das Feld [Suchen...] in der Menüzeile gesucht werden:

2.3 Unterschiede zwischen den Firmwareversionen

Die vorliegende Bedienungsanleitung gilt für die Stellungsregler der Typ 3730-2/-3/-4/-5 und 3731-3/-5 in den nachfolgenden Firmwareversionen:

Stellungsregler	Firmware 1.5x	Firmware 1.6x
Тур 3730-2	•	•
Тур 3730-3	•	•
Тур 3730-4	•	
Тур 3730-5	•	•
Тур 3731-3	•	•
Тур 3731-5		•

Typ 3730-3

- keine Unterschiede

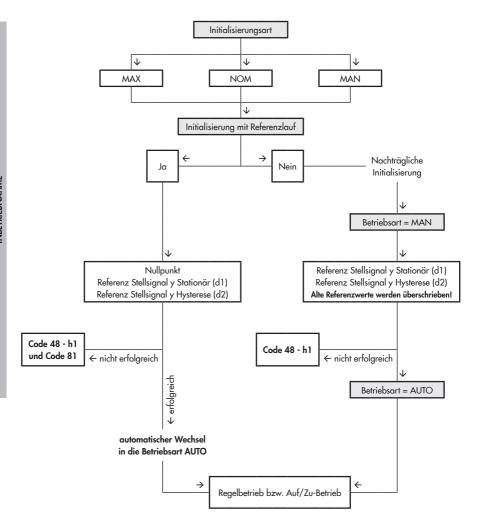
Typ 3730-5

- Die Statusklassifikation "Außerhalb der Spezifikation" (A) steht erst ab Firmwareversion 1.6x zur Verfügung.
- Die Beobachterfunktion **Datenlogger** steht in Firmwareversion 1.6x nicht mehr zur Verfügung.
- Die Statusklassifikation erfolgt in Firmware 1.5x im Ordner [Einstellungen > Stellungsregler > Fehlerüberwachung > Statusklassifikation > Erweitert], ab Firmwareversion 1.6x im Ordner [Einstellungen > Stellungsregler > Diagnosekonfiguration > Klassifikation]

2.4 Inbetriebnahme

Damit die Ventildiagnose vollständig genutzt werden kann, muss der Stellungsregler initialisiert sein. Bei der Initialisierung passt sich der Stellungsregler optimal an die Reibungsverhältnisse und den Stelldruckbedarf des Stellventils an.

Die Initialisierung kann mit den Initialisierungsarten Maximalbereich (MAX), Nennbereich (NOM) und Handeinstellung (MAN) erfolgen.


- Maximalbereich (MAX)
 - Initialisierungsmodus zur einfachen Inbetriebsetzung für Ventile mit zwei mechanisch eindeutig begrenzten Endlagen,
 - z. B. Dreiwegeventile
- Nennbereich (NOM)
 Initialisierungsmodus f
 ür alle Durchgangsventile
- Manuell gewählter Bereich (MAN)
 Initialisierungsmodus für Durchgangsventile unter manueller Vorgabe der AUF-Stellung

Für die Initialisierung müssen Anwendungsart, Druckgrenze und die für die gewählte Initialisierung notwendigen Inbetriebnahmeparameter vorgegeben werden.

i Info

Die Inbetriebnahme des Stellungsreglers ist in der zugehörigen Standard-Anleitung detailliert beschrieben (vgl. Tabelle 1).

Bei der Initialisierung des Stellungsreglers werden der Proportionalitätsfaktor Kp und die Vorhaltezeit Tv optimal eingestellt. Sollte

Bedienung

der Stellungsregler auf Grund zusätzlicher Störungen zu unzulässig hohem Nachschwingen neigen, können der Proportionalitätsfaktor und die Vorhaltezeit nach der Initialisierung angepasst werden. Dazu kann die Vorhaltezeit stufenweise erhöht werden, bis das gewünschte Einlaufverhalten erreicht ist. Wenn der Maximalwert von 4 bei der Vorhaltezeit erreicht ist, kann der Proportionalitätsfaktor stufenweise verringert werden.

• HINWEIS

Die Änderung des Proportionalitätsfaktors beeinflusst die Regeldifferenz!

Inbetriebnahme

- Anwendungsart (Code 49 h0) ¹⁾:
 [Regelventil], Auf/Zu Ventil
- Initialisierungsart (Code 6):
 [Maximalbereich (MAX)], Nennbereich (NOM) oder Handeinstellung (MAN)
- Stiftposition (Code 4): [Aus], 17, 25, 35, 50, 70, 100, 200, 300 mm, 90° ²⁾
- Druckgrenze (Code 16): [Aus], 3.7, 2.4, 1.4 bar

Einstellungen > Stellungsregler > Kennwerte

- Gewünschter Proportionalitätsfaktor Kp (Stufe) (Code 17): 0 bis 17, [7]
- Gewünschte Vorhaltezeit Tv (Stufe) (Code 18):
 Aus, 1 bis 4, [2]
- Einstellung beim Typ 3730-4 nicht möglich. Hier gilt immer: Anwendungsart = Regelventil
- ²⁾ Typ 3730-4 und 3731-3/-5: ohne 300 mm

2.4.1 Referenzlauf

Die Überwachung von Reibung, Zuluftdruck, Leckage (Pneumatik und extern), Nullpunkt und Antriebsfedern benötigt eine zusätzliche Referenzmessung der Testfunktionen 'Stellsignal y Stationär' (test d1) und 'Stellsignal y Hysterese' (test d2), vgl. Kapitel 5.1 und Kapitel 5.2.

• HINWEIS

- Während des Referenzlaufs wird der Stellbereich des Ventils durchfahren.
- Wenn der Stellungsregler durch einen Ersatzabgleich (SUB) initialisiert wurde, dann kann der Referenzlauf nicht durchgeführt werden.

Der Referenzlauf wird im Ordner **Diagnose** mit dem Befehl 'Start Referenzlauf' angestoßen. Im Stellungsregler erscheinen im Wechsel "tESt" und "d1" bzw. "d2".

i Info

- Über den Befehl 'Stopp Referenzlauf' wird der Referenzlauf abgebrochen.
- Mit Hilfe der Einstellung 'Initialisierung mit Referenzlauf' = "Ja" erfolgt der Referenzlauf automatisch nach der Initialisierung.
- Durch einen erneuten Referenzlauf werden die Ergebnisse vorhandener Referenzläufe überschrieben und die Diagnosedaten gelöscht
- War ein Referenzlauf fehlerhaft oder unvollständig, wird am Stellungsregler Code 48 - h1 gesetzt. Wurde der Parameter 'Initialisierung mit Referenzlauf' aktiviert, wird

ein fehlerhafter Referenzlauf zusätzlich unter Code 81 angezeigt.

- Ein fehlerhafter oder unvollständiger Referenzlauf hat keinen Einfluss auf die Regelfunktion des Stellungsreglers.
- Wenn vor dem Start der Testfunktionen 'Stellsignal y Stationär' oder 'Stellsignal y Hysterese' kein Referenzlauf durchgeführt wurde, dann werden die Daten des ersten Testlaufs als Referenz verwendet

Diagnose

– Start Referenzlauf (Code 48 - d7) oder

Inbetriebnahme

Initialisierung mit Referenzlauf (Code 48 - h0):Ja, [Nein]

2.5 Diagnosefunktionen

Es wird zwischen Beobachter- und Testfunktionen unterschieden:

Beobachterfunktionen

Daten werden während des laufenden Prozesses – ohne Beeinträchtigung des Regelbetriebs – gesammelt, im Stellungsregler gespeichert und ausgewertet. D. h., der Stellungsregler folgt jederzeit dem vorgegebenen Sollwert. Bei einem Ereignis wird eine klassifizierte Statusoder Fehlermeldung generiert.

2. Testfunktionen

Hier werden – ähnlich wie bei den Beobachterfunktionen – Daten gesammelt, im Stellungsregler gespeichert und ausgewertet. Nur wird die Ventilposition nicht vom Sollwert, sondern durch die Einstellungen der Testprozedur vorgegeben.

• HINWEIS

Testfunktionen dürfen nur gestartet werden, wenn der Anlagenzustand dies auch zulässt (z.B. Anlagenstillstand oder Wartung in der Werkstatt). Aus Sicherheitsgründen sind die Testfunktionen – bis auf den Teilhubtest (PST) – nur im Handbetrieb durchführbar.

Bei unzureichender elektrischer Hilfsenergie sowie bei Auslösen des Magnetventils/bei aktiver Zwangsentlüftung wird eine Testfunktion beendet und der Stellungsregler wechselt in die Sicherheitsstellung.

2.5.1 Anwendungsart

Abhängig von der Anwendungsart werden in EXPERTplus verschiedene Diagnosefunktionen angeboten.

Bei den Typ 3730-2/-3/-5 und 3731-3/-5 stehen die Anwendungsarten **Regelventil** und Auf/Zu-Ventil zur Verfügung.

Beim Typ 3730-4 kann die Anwendungsart nicht ausgewählt werden, der Stellungsregler ist nur für Regelventile einsetzbar.

Je nach Anwendungsart unterscheidet sich das Verhalten im Automatikbetrieb:

- Regelventil

Der Stellungsregler folgt stetig dem vorgegebenen Sollwert.

Im Display wird die Ventilposition (Istposition) in % angezeigt.

Bedienung

Auf/Zu-Ventil

Diskrete Auswertung des vorgegebenen Sollwerts.
Im Display wird die Ventilposition (Istposition) in % und im Wechsel "O/C" (Open/Close) angezeigt, vgl. Kapitel 4.1.

2.5.2 Auswertung

Eine Übersicht über die Diagnosefunktionen und deren Aussagen zum Zustand des Stellventils enthält – abhängig von der Anwendungsart – Tabelle 1.

Tabelle 1: Diagnosefunktionen und Testauswertung

Diagnosefunktion	Regel- ventil	Auf/Zu- Ventil 1)	Auswertung	vgl. Kapitel
Beobachterfunktioner	1			
Auf/Zu 1) – •		Losbrechzeit Laufzeit Hubendstellung	4.1, Sei- te 27	
Datenlogger 3), 5)	•	•	entsprechend der Triggerauswahl	4.2, Sei- te 31
Histogramm Ven- tilstellung x	•	0	Trend Stellbereich Stellbereich	4.3, Sei- te 37
Histogramm Re- geldifferenz e	•	•	Beschränkung Stellbereich Mechanische Verbindung Stellungs- regler/Ventil Innere Leckage Mittlere Regeldifferenz	4.4, Sei- te 40
Histogramm Zyk- lenzähler	•	•	Stangenabdichtung Stopfbuchse/Ex- terne Leckage Dynamischer Belastungsfaktor	4.5, Sei- te 45
Diagramm Stell- signal y Statio- när	•	0	Zuluftdruck Leckage Pneumatik Antriebsfedern	4.6, Sei- te 49
Diagramm Stell- signal y Hyste- rese	•	0	Reibung ^{1], 2], 3], 5]} Externe Leckage eventuell bald zu erwarten	4.7, Sei- te 53
Endlagentrend	•	•	Trend Endlage Nullpunktverschiebung	4.8, Sei- te 59

• voller Funktionsumfang

O Funktion wird ausgeführt aber nicht ausgewertet

- Funktion wird nicht ausgeführt

1) nicht Typ 3730-4

2) nicht Typ 3730-5 (1.5x)

3) nicht Typ 3730-5 (1.6x)

4) nicht Typ 3731-3

5) nicht Typ 3731-5

Bedienung

Diagnosefunktion	Regel- ventil	Auf/Zu- Ventil 1)	Auswertung	vgl. Kapitel			
Testfunktionen	Testfunktionen						
Stellsignal y Stationär	•	•	Zuluftdruck Leckage Pneumatik Antriebsfedern	5.1, Seite 63			
Stellsignal y Hysterese	•	•	Reibung	5.2, Seite 67			
Statische Kennlinie	•	•	Tote Zone	5.3, Seite 70			
Teilhubtest (PST)	•	•	Überschwinger Totzeit T63 T98 (Typ 3730-2/-4/-5, 3731-3/-5) Anregelzeit Ausregelzeit	5.4, Seite 75			
Vollhubtest (FST)	•	•	Überschwinger Totzeit T63 T98 (Typ 3730-2/-4/-5, 3731-3/-5) Anregelzeit Ausregelzeit	5.5, Seite 85			
Leckage- sensor 1), 2), 3), 4), 5)	•	•	Innere Leckage	7, Seite 93			

• voller Funktionsumfang

O Funktion wird ausgeführt aber nicht ausgewertet

- Funktion wird nicht ausgeführt

1) nicht Typ 3730-4

2) nicht Typ 3730-5 (1.5x)

3) nicht Typ 3730-5 (1.6x)

4) nicht Typ 3731-3

5) nicht Typ 3731-5

3 Überwachung

3.1 Statusmeldungen

Der Stellungsregler enthält ein integriertes Diagnosekonzept, um klassifizierte Statusmeldungen zu generieren.

Es wird zwischen Standard-Statusmeldungen und erweiterten Statusmeldungen unterschieden

Standard-Statusmeldungen

Die Standard-Statusmeldungen enthalten Informationen zur Inbetriebnahme sowie zum Betrieb und Zustand des Stellungsreglers. Die Statusmeldungen sind aufgeteilt in die Gruppen:

- Status
- Betrieb
- Hardware
- Initialisieruna
- Datenspeicher
- Temperatur

Standard-Statusmeldungen werden am Stellungsregler unter den in den Standard-Anleitungen aufgelisteten Codes angezeigt.

Weitere Kennwerte werden in den Unterordnern des Ordners **Stellungsregler** angezeigt:

- Betrieb > Prozesswerte: Informationen über die aktuellen Prozessgrößen, Sammelstatus und Temperatur
- Einstellungen > Stellungsregler > Fehlerüberwachung: Angabe des Wegintegrals mit frei definierbaren Grenzen

Stellungsregler > Inbetriebnahme > Initialisierung: Auflistung der Initialisierungsfehler; diese befinden sich auch im Ordner Diagnose > Statusmeldungen

Erweiterte Statusmeldungen

Die erweiterten Statusmeldungen ergeben sich aus den Ergebnissen der Beobachterund Testfunktionen.

Für die frühzeitige Planung von vorbeugenden Wartungs- und Instandhaltungsarbeiten werden Meldungen zu den folgenden Bereichen erzeugt:

- Zuluftdruck
- Trend Stellbereich
- Leckage Pneumatik
- Beschränkung Stellbereich
- Trend Endlage
- Mechanische Verbindung Stellungsregler/Stellventil
- Stellbereich
- Reibung
- Antriebsfedern
- Innere Leckage
- Externe Leckage
- Teilhubtest (PST)/Vollhubtest (FST)
- Auf/Zu (nicht Typ 3730-4)

Ist eine der aufgeführten Diagnose-Meldungen aktiv, wird Code 79 gesetzt.

Erweiterte Statusmeldungen können, gesondert nach möglichen Ursachen, klassifiziert werden, vgl. Kapitel 4.3 bis Kapitel 5.5.

Überwachung

Folgende Klassifizierungen sind möglich:

Keine Meldung ⊗

Ist einem Ereignis "Keine Meldung" zugeordnet, so hat dieses Ereignis keinen Einfluss auf den Sammelstatus.

- Wartungsbedarf/-anforderung Das Gerät kann seiner Aufgabenstellung noch (eingeschränkt) folgen, ein Wartungsbedarf bzw. überdurchschnittlicher Verschleiß wurde festgestellt. Der Abnutzungsvorrat ist bald erschöpft bzw. nimmt schneller ab als vorgesehen. Ein Wartungseingriff ist mittelfristig notwendig.

Außerhalb der Spezifikation/Ungültiger Prozesszustand

Das Gerät wird außerhalb der spezifizierten Einsatzbedingungen betrieben.

- Ausfall 😵

Der Stellungsregler kann auf Grund einer Funktionsstörung im Stellungsregler oder an seiner Peripherie seiner Aufgabenstellung nicht folgen oder hat noch keine erfolgreiche Initialisierung durchlaufen.

Die Statusmeldungen werden im Verzeichnis Diagnose > Statusmeldungen und Diagnose > Statusmeldungen > Erweitert angezeigt.

3.1.1 Rücksetzen von Statusmeldungen

Bei Auftreten einer Statusmeldung sollte zunächst die Fehlerursache lokalisiert und der Fehler beseitigt werden.

Abhilfehinweise zu den Statusmeldungen enthält, vgl. Kapitel 9.2.

Statusmeldungen können einzeln oder mit Hilfe der Rücksetzfunktion zurückgesetzt werden, eine Übersicht über das Rücksetzen der Diagnose enthält Tabelle 2. Das Rücksetzen erfolgt im Verzeichnis **Diagnose > Rücksetzen** und/oder **Betrieb > Rücksetzen**.

Sollen Messwerte und Auswertung auch nach dem Rücksetzen des Stellungsreglers erhalten bleiben, besteht die Möglichkeit, die Einstellungen auszulesen und auf dem PC zu speichern.

Einzelnes Rücksetzen

- Statusmeldungen, die am Stellungsregler durch einen Code angezeigt werden, können vor Ort nach Auswahl des Codes über den Dreh-/Druckknopf quittiert werden, vgl. Standard-Anleitung des Stellungsreglers.
- Beim Rücksetzen von Histogrammen und Diagrammen werden jeweils auch die Werte der Kurzzeitbetrachtung zurückgesetzt.
- Das Rücksetzen der Messwerte bewirkt kein Rücksetzen der Diagnoseparameter und Referenzwerte.
- Nach dem Rücksetzen ist keine neue Initialisierung erforderlich.

Rücksetzen der Diagnose

Code 36 - Diag

- Daten der Beobachter- und Testfunktionen werden gemäß Tabelle 2 zurückgesetzt
- Referenzwert der Beobachterfunktion 'Endlagentrend' wird gelöscht.
- Referenzwerte von Testfunktionen ('Stellsignal y Stationär' und 'Stellsignal y Hysterese') bleiben erhalten.
- Statusklassifikation und Protokollierung bleiben erhalten.
- Nach dem Rücksetzen ist keine neue Initialisierung erforderlich.

Soll die Diagnose turnusmäßig zurückgesetzt werden, kann das zugehörige Zeitintervall unter 'Gewünschte Zeit 'Rücksetzen Diagnose'' eingestellt werden. Mit der Einstellung "00:00:00" bzw. "0" ist das turnusmäßige Rücksetzen deaktiviert.

Betrieb > Rücksetzen

- Rücksetzen Diagnose (Code 36 Diag)
- Gewünschte Zeit 'Rücksetzen Diagnose' (Code 48
 h3): frei einstellbar, [0.00:00:00 d.h:min:s] ¹⁾
- ¹⁾ Typ 3730-4: 0 bis 365 d, [0 d]

Start mit Defaultwerten

Code 36 - Std

- Daten der Beobachter- und Testfunktionen werden gemäß Tabelle 2 zurückgesetzt.
- Referenzwerte werden gelöscht.
- Statusklassifikation und Protokollierung werden gelöscht.

 Nach dem Rücksetzen muss der Stellungsregler neu initialisiert werden.

Vor dem Anbau des Stellungsreglers an ein neues Stellventil muss er mit Code 36 - Std zurückgesetzt und neu initialisiert werden.

Betrieb > Rücksetzen

- Start mit Defaultwerten (Code 36 Std) 1), 2)
- Typ 3730-4: 'Rücksetzen Inbetriebnahmeparameter, Geräteidentifikation, Funktionsblöcke und Klassifizierung'
- Typ 3730-5 und 3731-5: 'Rücksetzen der Inbetriebnahme- und Diagnosedaten'

3.2 Sammelstatus

Um eine bessere Übersicht über den Zustand des Stellventils zu gewährleisten, werden alle Statusmeldungen zu einem Sammelstatus zusammengefasst. Er ergibt sich aus der Verdichtung aller Statusmeldungen des Geräts. Die Statusmeldung mit der höchsten Priorität bestimmt den Sammelstatus.

Der Sammelstatus wird in TROVIS-VIEW am rechten Rand der Infoleiste, auf der Startseite sowie im Verzeichnis **Diagnose > Statusmeldungen** angezeigt, Symbole und ihre Bedeutung vgl. Tabelle 3.

Zusätzlich kann der Sammelstatus zum Starten des getriggerten Datenloggers herangezogen werden, vgl. Kapitel 4.2.2.

Überwachung

i Info

Solange der Stellungsregler nicht ausgelesen wurde, ist der Sammelstatus mit 🗖 gekennzeichnet

Diagnose > Statusmeldungen

– Sammelstatus (Code 48 - d6)

Am Stellungsregler kann der Sammelstatus im Display unter Code 48 - d6 abgelesen werden, vgl. Tabelle 3.

3.2.1 Sammelstatus am Störmeldeausgang

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•			

Bei Stellungsreglern mit Störmeldeausgang wird der Sammelstatus zusätzlich am Störmeldeausgang abgebildet, wenn eine der folgenden Bedingungen vorliegt:

- 1. Sammelstatus "Ausfall" liegt an.
- Sammelstatus "Funktionskontrolle" liegt an und die Abbildung am Störmeldeausgang ist aktiviert.
- Sammelstatus "Wartungsbedarf" liegt an und die Abbildung am Störmeldeausgang ist aktiviert.

Einstellungen > Stellungsregler > Fehlerüberwachung

- Störmeldung bei Sammelstatus 'Funktionskontrolle' (Code 32): [Ja]
- Störmeldung bei Sammelstatus 'Wartungsbedarf' (Code 33): [Ja]

3.3 Protokollierung

Die letzten dreißig generierten Meldungen werden im Stellungsregler mit Zuordnung zum Betriebsstundenzähler gespeichert.

Die gespeicherten Meldungen werden in TROVIS-VIEW im Verzeichnis **Diagnose > Statusmeldungen > Protokollierung** angezeigt.

i Info

- Ist der Stellungsregler mit einem Magnetventil ausgerüstet, wird ein Auslösen des Magnetventils nur dann protokolliert, wenn der Parameter 'Protokollierung int. Magnetventil' gesetzt ist.
- Löst das Magnetventil erneut aus, erfolgt die Protokollierung nur, wenn seit dem letzten Auslösen zumindest die im Parameter 'Mindestabstand Neuprotokollierung int. MGV' vorgegebene Zeit vergangen ist.

Einstellungen > Stellungsregler > Fehlerüberwachung

- Protokollierung int. Magnetventil 1): [Ja], Nein
- Mindestabstand Neuprotokollierung int. MGV ¹⁾:
 0 bis 5000 s, [300 s]
- 1) Nicht Typ 3730-4

Tabelle 2: Rücksetzfunktionen

Wenn nicht separat aufgeführt, werden alle eingestellten Parameter und die aufgenommenen Messwerte der genannten Diagnosefunktion zurückgesetzt.

Funktion		Einzelnes Rücksetzen	Code 36 - Diag	Code 36 - Std
Betriebsstundenzä	hler			
Gerät eingesc	Gerät eingeschaltet seit (letzter) Initialisierung		JA	JA
Gerät seit Initi	alisierung in Regelung	NEIN	JA	JA
Statusklassifikation	1	NEIN	NEIN	JA
Protokollierung		JA	NEIN	JA
Beobachterfunktion	onen			
A (/7 1)	Parameter	JA	NEIN	JA
Auf/Zu 1)	Messwerte	JA	JA	JA
Datenlogger ^{2), 3)}		NEIN	JA	JA
Histogramm Ventilstellung x		JA	JA	JA
Kurzzeitbetrachtung		JA	JA	JA
Histogramm Regeldifferenz e		JA	JA	JA
Kurzzeitbetrachtung		JA	JA	JA
Histogramm Zykle	Histogramm Zyklenzähler		JA	JA
Kurzzeitbetrad	chtung	JA	JA	JA
Diagramm Stellsig	nal y Stationär	JA	JA	JA
Kurzzeitbetrad	chtung	JA	JA	JA
Diagramm Stellsig	nal y Hysterese (d5)	JA	JA	JA
Kurzzeitbetrad	chtung	JA	JA	JA
F. II	Referenzwert	JA	JA	JA
Endlagentrend	Parameter, Messwerte	JA	JA	JA
Testfunktionen				
Stellsignal y	Referenzwerte	NEIN	NEIN	JA
Stationär (d1)	Messwerte	JA	JA	JA
Stellsignal y	Referenzwerte	NEIN	NEIN	JA
Hysterese (d2)	Messwerte	JA	JA	JA

Überwachung

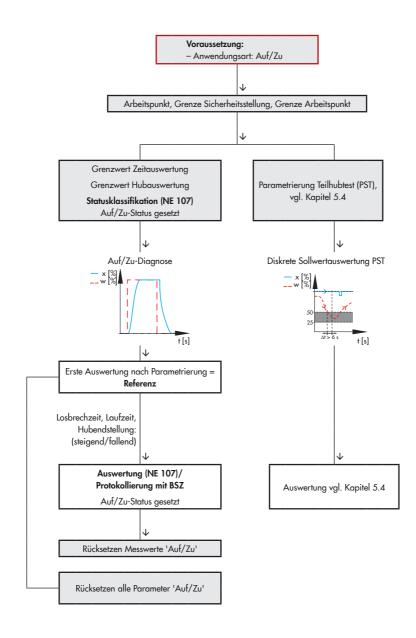
Funktion	Einzelnes Rücksetzen	Code 36 - Diag	Code 36 - Std
Statische Kennlinie (d3)	NEIN	JA	JA
Teilhubtest (PST) (d4)	JA	NEIN	JA
Vollhubtest (FST) (d6)	JA	NEIN	JA
Leckagesensor			
Referenztest 11, 3)	NEIN	NEIN	JA
Wiederholungstest 1), 3)	JA	NEIN	JA
Kurzzeitbeobachtung ^{1), 3)}	NEIN	JA	JA
Langzeitbeobachtung ^{1), 3)}	NEIN	JA	JA
Pegelbeobachtung 1), 3)	NEIN	JA	JA

¹⁾ nicht Typ 3730-4

Tabelle 3: Anzeige des Sammelstatus

Statusmeldung	TROVIS-VIEW 4/DTM	Stellungsregler	Priorität
Ausfall	orot	1,	
Funktionskontrolle 1)	₩ orange	Textmeldung z. B. tESting, tunE oder tESt	1
Außerhalb der Spezifikation/ Ungültiger Prozesszustand 1)	🕂 gelb	/ blinkend	
Wartungsbedarf/ Wartungsanforderung	♦ blau	ß	
Keine Meldung, ok	grün		

Nicht Typ 3730-5 (1.5x)

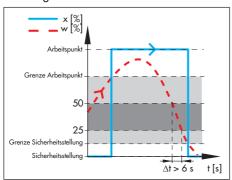

nicht Typ 3730-5 (1.6x) nicht Typ 3731-5

4 Beobachterfunktionen

Um auch während des Anlagenbetriebs Informationen zum Ventil, Antrieb und zur pneumatischen Zuluftversorgung zu gewinnen, nimmt der Stellungsregler im laufenden Betrieb den *Sollwert w*, die *Ventilstellung x*, das *Stellsignal y* und die *Regeldifferenz e* auf. Die während des Prozesses gewonnenen Daten werden gespeichert und mit Hilfe der Beobachterfunktionen analysiert. Ein unterlagerter Hysteresetest kann zusätzlich eine Reibungsänderung ermitteln.

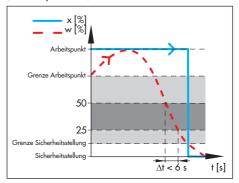
Die Beobachterfunktionen haben keinen Einfluss auf den laufenden Prozess

Die Auswertung der Messdaten erfolgt, nachdem sich der Stellungsregler eine Stunde im Automatikbetrieb oder im Handbetrieb befindet. Nur bei den Beobachterfunktionen 'Histogramm Zyklenzähler' und 'Endlagentrend' startet die Auswertung direkt nach Übergang in den Automatikbetrieb bzw. Handbetrieb.


4.1 Auf/Zu-Ventil

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•		•	•

Beim Auf/Zu-Ventil ist der Hubbereich über die Sicherheitsstellung und den Arbeitspunkt definiert. Dadurch werden die folgenden Parameter zur Festlegung des Arbeits- und Sollwertbereichs nicht ausgewertet und können nicht geändert werden:


- Hub-/Drehwinkelbereich Anfang/Ende (Code 8/9)
- Hub-/Drehwinkelbegrenzung unten/ oben (Code 10/11)
- Führungsgrößenbereich Anfang/Ende (Code 12/13)

Im Automatikbetrieb wird der Sollwert diskret ausgewertet.


Befindet sich der Sollwert (···) beim Start des Automatikbetriebs unterhalb der 'Grenze Arbeitspunkt', fährt das Ventil (—) die Sicherheitsstellung an. Steigt der Sollwert an und überschreitet er die 'Grenze Arbeitspunkt', so fährt das Ventil in den 'Arbeitspunkt'.

Sinkt der Sollwert im weiteren Verlauf unter die 'Grenze Sicherheitsstellung', wechselt das Ventil zurück in die Sicherheitsstellung (im Beispiel 0 %).

Befindet sich der Sollwert (---) beim Start des Automatikbetriebs oberhalb der 'Grenze Arbeitspunkt' fährt das Ventil (—) den 'Arbeitspunkt' an. Sinkt der Sollwert im weiteren Verlauf unter die 'Grenze Sicherheitsstellung', wechselt das Ventil in die Sicherheitsstellung (im Beispiel 0 %).

Auslösen des Teilhubtests (PST)

Ein Teilhubtest wird ausgelöst, wenn sich der Sollwert (---) vom 'Arbeitspunkt' aus in den

Beobachterfunktionen

Bereich zwischen 25 und 50 % Hub bewegt und hier über sechs Sekunden verbleibt, vgl. Kapitel 5.4.1.

Damit der Teilhubtest durchgeführt wird, muss der PST-Diagnoseparameter 'Sprungstart' im Bereich der definierten Stellung 'Sprungtoleranzgrenze' liegen.

Nach Beendigung des Teilhubtests fährt das Ventil zurück in die vorherige Stellung (Sicherheitsstellung oder 'Arbeitspunkt').

Abbruch des Teilhubtests (PST)

Der Teilhubtest wird abgebrochen, wenn der Sollwert (---) den Bereich zwischen 'Grenze Sicherheitsstellung' und 'Grenze Arbeitspunkt' verlässt.

Nach Abbruch des Teilhubtests fährt das Ventil zurück in die vorherige Stellung (Sicherheitsstellung oder 'Arbeitspunkt').

Parametrierung

- Anwendungsart "Auf/Zu-Ventil" einstellen
- 2. Auf/Zu-Ventil parametrieren.
- 3. Teilhubtest (PST) parametrieren.

Inbetriebnahme

Anwendungsart (Code 49 - h0):
 Auf/Zu-Ventil

Einstellungen > Stellungsregler > Führungsgröße

- 2. Arbeitspunkt (Code 49 h1) 1): 0.0 bis 100 %, [100 %]
 - Grenze Sicherheitsstellung (Code 49 h2) 1): 0.0 bis 20.0 %, [12.5 %]
 - Grenze Arbeitspunkt (Code 49 h5) 11: 55.0 bis 100.0 %, [75.0 %]

Diagnose > Testfunktionen > Teilhubtest

- 3. vgl. Kapitel 5.4
- 1) Nicht Typ 3730-5 und 3731-5

4.1.1 Auf/Zu-Diagnose

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•		•	•

Die Auf/Zu-Diagnose liefert Aussagen über die Hubendstellung, die Laufzeiten (steigend/fallend) sowie die Losbrechzeiten (steigend/fallend). Die Datenaufnahme erfolgt im Automatikbetrieb im Hintergrund, eine Aktivierung ist nicht erforderlich.

Im laufenden Betrieb vergleicht der Stellungsregler die aktuellen Lauf- und Losbrechzeiten sowie den aktuellen Hub mit den bei der Referenzmessung (erste Auswertung) ermittelten Werten

Parametrierung

- Grenzwerte für die Überwachung einstellen, vgl. Kapitel 4.1.2.
- 2. Statusmeldung klassifizieren.

Diagnose > Beobachterfunktion > Auf/Zu

- Grenzwert Zeitauswertung (Code 49 h7):
 0.6 bis 30.0 s, [0.6 s]
 - Grenzwert Hubauswertung (Code 49 h8): 0.3 bis 100.0 %, [0.3 %]

Einstellungen > Stellungsregler > Fehlerüberwachung > Statusklassifikation > Erweitert > Auf/Zu bzw.

Einstellungen > Stellungsregler > Diagnosekonfiguration > Klassifikation

2. - Auf/Zu-Status gesetzt (Code 49- h9):
[⊗], ♦, ⊗, (♥), (♠)

4.1.2 Auswertung und Überwachung

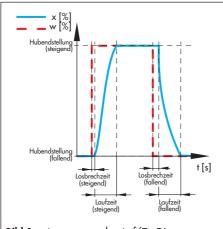


Bild 1: Auswertung der Auf/Zu-Diagnose

Die Auswertung weist auf einen Fehler hin, wenn mindestens eine der nachfolgenden Bedingungen beim Verfahren des Ventils erfüllt ist:

- Die aktuelle 'Losbrechzeit (steigend)' weicht um den Betrag 'Grenzwert Zeitauswertung' vom Referenzwert ab.
- Die aktuelle 'Losbrechzeit (fallend)' weicht um den Betrag 'Grenzwert Zeitauswertung' vom Referenzwert ab.
- Die aktuelle 'Laufzeit (steigend)' weicht um den Betrag 'Grenzwert Zeitauswertung' vom Referenzwert ab.
- Die aktuelle 'Laufzeit (fallend)' weicht um den Betrag 'Grenzwert Zeitauswertung' vom Referenzwert ab.

- Die aktuelle 'Hubendstellung (steigend)' weicht um den Betrag 'Grenzwert Hubauswertung' vom Referenzwert ab.
- Die aktuelle 'Hubendstellung (fallend)' weicht um den Betrag ''Grenzwert Hubauswertung' vom Referenzwert ab.

Ist eine der Bedingungen erfüllt, generiert der Stellungsregler eine Meldung 'Auf/Zu' entsprechend der eingestellten Statusklassifikation.

Diagnose > Statusmeldung > Erweitert

- Auf/Zu

4.1.3 Einzelnes Rücksetzen

Meldung und Auswertung werden über den Befehl 'Rücksetzen Messwerte 'Auf/Zu'' zurückgesetzt.

Die Parameter zum Auf/Zu-Ventil und die Grenzwerte werden über den Befehl 'Rücksetzen alle Parameter 'Auf/Zu'' zurückgesetzt.

Der Stellungsregler speichert neben der Referenzauswertung jeweils die letzten zwei Auswertungen. Bei Durchführung eines weiteren Tests wird die Auswertung des letzten Tests gelöscht.

Betrieb > Rücksetzen

- Rücksetzen Messwerte 'Auf/Zu'
- Rücksetzen alle Parameter 'Auf/Zu'

4.2 Datenlogger

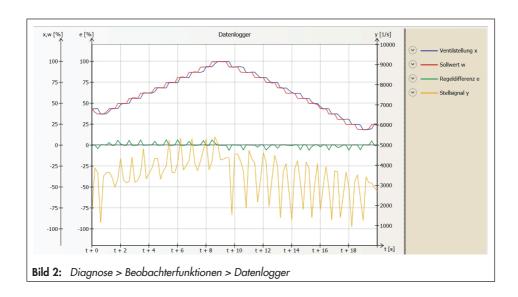
Der Datenlogger nimmt die Messgrößen Ventilstellung x, Sollwert w, Regeldifferenz e und Stellsignal y auf. Die aufgezeichneten Messwerte werden grafisch über die Zeit abgebildet.

i Info

Der Datenlogger wird bei nachfolgenden Ereignissen unterbrochen und muss neu aktiviert werden:

- Wechsel der Betriebsart
- Ausfall der Luftversorgung
- Ausfall der elektrischen Versorgung des Stellungsreglers
- Ausfall der elektrischen Versorgung des externen Magnetventils

4.2.1 Permanente Funktionsweise


3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	1)	

Funktion bis Firmware 1.5x verfügbar

Die Messgrößen werden mit der vorgegebenen 'Abtastzeit' aufgenommen und in einem Ringspeicher mit einer Speichertiefe von 100 Messwerten je Messgröße gespeichert.

i Info

Die Messwerte der letzten 24 Stunden können aus dem Diagramm 'Datenlogger' abgelesen werden, wenn das Verzeichnis **Diagnose > Beobachterfunktionen > Datenlogger** in dieser Zeit geöffnet bleibt.

Parametrierung

- 1. Funktionsweise 'Permanent' einstellen.
- 2. 'Abtastzeit' einstellen.
- Datenlogger starten.
 Die Anzeige 'Testinformation' meldet "Test aktiv".

Diagnose > Beobachterfunktionen > Datenlogger

- 1. Auswahl: [Permanent]
- 2. Abtastzeit: 0.2 bis 3600.0 s, [1.0 s]
- 3. Start Datenlogger

i Info

Über den Befehl 'Stopp Datenlogger' wird der Datenlogger abgebrochen ('Testinformation' = "Test nicht aktiv").

4.2.2 Getriggerte Funktionsweise

Nach Auftreten des unter 'Triggerauswahl' definierten Ereignisses 'Triggerstart über' (vgl. Kapitel 4.2.2.1 bis Kapitel 4.2.2.7) werden die Messwerte im Ringspeicher abgelegt. Das auslösende Ereignis wird protokolliert. Die Datenaufnahme endet, sobald 100 Messwerte je Messgröße im Ringspeicher abgelegt wurden. Die 'Abtastzeit' gibt das Zeitintervall für die Messwertaufnahme vor. Bei einer 'Pretriggerzeit' größer 0 gehen Messwerte, die in diesem Zeitraum aufgenommen wurden, in das Triggerergebnis von 100 Messwerten je Messgröße ein. Die 'Pretriggerzeit' kann maximal den Wert 100 x 'Abtastzeit' annehmen.

Parametrierung

- 1. Funktionsweise 'Getriggert' einstellen.
- Trigger parametrieren.
- Abtastzeit einstellen.
- Datenlogger starten.
 Die Anzeige 'Testinformation' meldet "Test aktiv". Am Ende der Datenaufnahme meldet die Anzeige 'Fortschritt' "Speicher voll, Datenaufnahme abgeschlossen"

i Info

Über den Befehl 'Stopp Datenlogger' wird der Datenlogger abgebrochen ('Testinformation' = "Test nicht aktiv").

4.2.2.1 Triggerstart über Sammelstatus

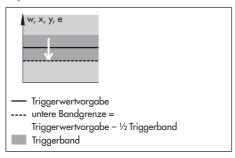
3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	1)	

Funktion bis Firmware 1.5x verfügbar

Die Messwerte gehen in das Triggerergebnis ein, wenn der unter 'Triggerstart durch Sammelstatus' eingestellte Sammelstatus ansteht.

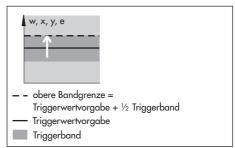
Diagnose > Beobachterfunktionen > Datenlogger

- 1. Auswahl: Getriggert
- Triggerauswahl:
 Triggerstart über Sammelstatus
 - Pretriggerzeit:0.0 s bis 100 x 'Abtastzeit', [0.0 s]
 - Triggerung durch Sammelstatus: Keine Meldung, [Wartungsbedarf], Wartungsanforderung, Außerhalb der Spezifikation ¹⁾, Ausfall

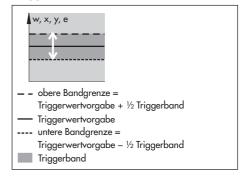

- 3. Abtastzeit: 0.2 bis 3600.0 s, [1.0 s]
- 4. Start Datenlogger
- 1) Typ 3730-5: Auswahl nicht möglich

4.2.2.2 Triggerstart über Sollwert, Ventilstellung, Stellsignal, Regeldifferenz

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	1)	

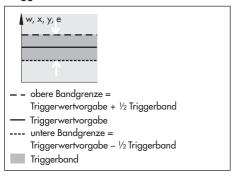

Die Messwerte gehen in das Triggerergebnis ein, wenn die unter 'Triggerwertvorgabe', 'Triggerband' und 'Triggerflanke' definierten Bedingungen für die gewählte Messgröße (Sollwert w, Ventilstellung x, Regeldifferenz e oder Stellsignal y) erfüllt sind.

'Triggerflanke' = "Low Pegel/Fallende Flanke/unterer Bandaustritt"


Die Bedingungen für den Triggerstart sind erfüllt, wenn der Grenzwert ('Triggerwertvorgabe' – ½ 'Triggerband') unterschritten wird.

'Triggerflanke' = "High Pegel/Steigende Flanke/oberer Bandaustritt"

Die Bedingungen für den Triggerstart sind erfüllt, wenn der Grenzwert ('Triggerwertvorgabe' + ½ 'Triggerband') überschritten wird.


'Triggerflanke' = "Bandaustritt"

Die Bedingungen für den Triggerstart sind erfüllt, wenn der untere Grenzwert ('Triggerwertvorgabe' – ½ 'Triggerband') unterschritten oder der obere Grenzwert ('Triggerwertvorgabe' + ½ 'Triggerband') überschritten wird

Diese Funktion ist nur aktiv, wenn gilt 'Triggerband' ≠ 0.

'Triggerflanke' = "Bandeintritt"

Die Bedingungen für den Triggerstart sind erfüllt, wenn der untere Grenzwert ('Triggerwertvorgabe' – ½ 'Triggerband') überschritten oder der obere Grenzwert ('Triggerwertvorgabe' + ½ 'Triggerband') unterschritten wird.

Diese Funktion ist nur aktiv, wenn gilt 'Triggerband' ≠ 0.

i Info

Die untere Bandgrenze nimmt minimal den Wert 0.0 % bzw. 0.0 ½ an. Die obere Bandgrenze nimmt maximal den Wert 100.0 % bzw. 100.0 ½ an.

Diagnose > Beobachterfunktionen > Datenlogger

- 1. Auswahl: Getriggert
- 2. Triggerauswahl: Triggerstart über Sollwert/ Ventilstellung/Stellsignal/Regeldifferenz
 - Triggerwertvorgabe: 0.0 bis 100.0 %, [99.0 %] (Sollwert, Istwert, Regeldifferenz) 0.0 bis 10000.0 ½, [99.0 ½] (Stellsignal)

- Triggerband:
 0.0 bis 100.0 %, [99.0 %] (Sollwert, Istwert, Regeldifferenz)
 0.0 bis 10000.0 ½, [99.0 ½] (Stellsignal)
- Pretriggerzeit:0.0 s bis 100 x 'Abtastzeit', [0.0 s]
- Triggerflanke: [Low Pegel/Fallende Flanke/ unterer Bandaustritt], High Pegel/Steigende Flanke/oberer Bandaustritt, Bandaustritt, Bandeintritt ¹⁾
- 3. Abtastzeit: 0.2 bis 3600.0 s, [1.0 s]
- 4. Start Datenlogger
- Typ 3730-4/-5: [Unterer Bandaustritt], Oberer Bandaustritt, Bandaustritt, Bandaustritt

4.2.2.3 Triggerstart über internes Magnetventil/Zwangsentlüftung

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	1)	

Funktion bis Firmware 1.5x verfügbar

Die Triggerung über das interne Magnetventil/die Zwangsentlüftung ist nur aktiv, wenn im Stellungsregler ein internes Magnetventil/ eine Zwangsentlüftung eingebaut ist, vgl. Anzeige 'Int. Magnetventil/Zwangsentlüftung' (Code 45).

Die Messwerte gehen in das Triggerergebnis ein, wenn das Magnetventil auslöst/die Zwangsentlüftung aktiviert wird.

Diagnose > Datenlogger

Auswahl: Getriggert

- Triggerauswahl:
 Triggerstart über int. MGV/ZWE
 - Pretriggerzeit:0.0 s bis 100 x 'Abtastzeit', [0.0 s]
- 3. Abtastzeit: 0.2 bis 3600.0 s, [1.0 s]
- 4. Start Datenlogger

4.2.2.4 Triggerstart über Sollwert oder internes Magnetventil/Zwangsentlüftung

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	1)	

1) Funktion bis Firmware 1.5x verfügbar

Die Triggerung über das interne Magnetventil/die Zwangsentlüftung ist nur aktiv, wenn im Stellungsregler ein internes Magnetventil/eine Zwangsentlüftung eingebaut ist, vgl. Anzeige 'Int. Magnetventil/Zwangsentlüftung' (Code 45).

Wenn eine der Bedingungen unter 'Triggerstart über internes Magnetventil/Zwangsentlüftung' oder 'Triggerstart über Sollwert' erfüllt ist, gehen die Messwerte in das Triggerergebnis ein.

Diagnose > Datenlogger

- 1. Auswahl: Getriggert
- Triggerauswahl: Triggerstart über Sollwert oder int. MGV-/ZWE
 - Triggerwertvorgabe: 0.0 bis 100.0 %, [99.0 %]
 - Triggerband: 0.0 bis 100.0 %, [99.0 %]
 - Pretriggerzeit:0.0 s bis 100 x 'Abtastzeit', [0.0 s]

- Triggerflanke: [Low Pegel/Fallende Flanke/ unterer Bandaustritt], High Pegel/Steigende Flanke/oberer Bandaustritt, Bandaustritt, Bandeintritt ¹⁾
- 3. Abtastzeit: 0.2 bis 3600.0 s, [1.0 s]
- 4. Start Datenlogger
- Typ 3730-4/-5: [Unterer Bandaustritt], Oberer Bandaustritt, Bandaustritt, Bandaustritt

4.2.2.5 Triggerstart über Binäreingang

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•			

Die Stellungsregler verfügen über einen optionalen Binäreingang. Die Triggerung über den Binäreingang ist nur aktiv, wenn der Stellungsregler mit dem Binäreingang ausgestattet ist.

Die Messwerte gehen in das Triggerergebnis ein, wenn sich der Zustand des Binäreingangs ändert.

Diagnose > Beobachterfunktionen > Datenlogger

- 1. Auswahl: Getriggert
- Triggerauswahl:
 Triggerstart über Binäreingang
 - Pretriggerzeit:0.0 s bis 100 x 'Abtastzeit', [0.0 s]
- 3. Abtastzeit: 0.2 bis 3600.0 s, [1.0 s]
- 4. Start Datenlogger

4.2.2.6 Triggerstart über diskreten 4.2.2.7 Triggerstart über Discrete Eingang 1/2

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
			•	1)	

Funktion bis Firmware 1.5x verfügbar

Die Stellungsregler verfügen über einen standardmäßig integrierten Binäreingang (BE1) und einen optionalen Binäreingang (BE2). Die Triggerung über den Binäreingang BE2 ist nur aktiv, wenn der Stellungsrealer mit dem Binäreingang ausgestattet ist.

Die Messwerte gehen in das Triggerergebnis ein, wenn sich der Zustand des Binäreingangs ändert. Mit der 'Triggerflanke' "Low Pegel" startet der Trigger, wenn der Binäreingang passiv ist; mit der Einstellung "High Pegel" startet der Trigger, wenn der Binäreingang aktiv ist.

Diagnose > Beobachterfunktionen > Datenlogger

- 1. Auswahl: Getriggert
- Triggerauswahl: Triggerstart über diskreten Eingang 1 bzw. Triggerstart über diskreten Eingang 2
 - Pretriggerzeit: 0.0 s bis 100 x 'Abtastzeit', [0.0 s]
 - Triggerflanke: [Low Pegel], High Pegel
- 3. Abtastzeit: 0.2 bis 3600.0 s, [1.0 s]
- Start Datenlogger

Output 1/2

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
				1)	

Funktion bis Firmware 1.5x verfügbar

Die Messwerte gehen in das Triggerergebnis ein, wenn die Führungsgröße OUT_D des Discrete Output gleich "1" ist, mit OUT_D = "0" wird der Datenlogger gestoppt.

i Info

Die Konfiguration des Funktionsblocks erfolgt über FOUNDATION™ fieldbus im Parameter SELECT DO 1/2 des Resource Blocks.

Diagnose > Beobachterfunktionen > Datenlogger

- 1. Auswahl: Getriggert
- Triggerauswahl: Triggerstart über Discrete Output 1 bzw. Triggerstart über Discrete Output 2
 - Pretriggerzeit: 0.0 s bis 100 x 'Abtastzeit', [0.0 s]
- 3. Abtastzeit: 0.2 bis 3600.0 s, [1.0 s]
- 4. Start Datenlogger

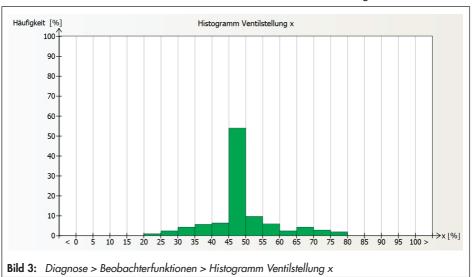
4.3 Histogramm Ventilstellung x

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	•	•

Das 'Histogramm Ventilstellung x' ist eine statistische Auswertung der aufgenommenen Ventilstellungen. Es gibt Aufschluss darüber, wo das Ventil in seiner Lebenszeit vorwiegend arbeitet und ob sich ein Trend für die Änderung des Arbeitsbereichs abzeichnet.

Die Datenaufnahme erfolgt – unabhängig von der eingestellten Betriebsart – im Hintergrund, eine Aktivierung ist nicht erforderlich.

Der Stellungsregler nimmt sekündlich die Ventilstellungen auf und ordnet sie vorgegebenen Ventilstellungsintervallen (Klassen) zu. Die Ventilstellungsintervalle werden grafisch in Form eines Balkendiagramms angezeigt.


- 'Mittelwert x Lang': Über die 'Betrachtungsdauer' gemittelte Intervallzugehörigkeit der Ventilstellung
- 'Anzahl Messpunkte': Summe der während der 'Betrachtungsdauer' aufgenommenen Messwerte
- 'Betrachtungsdauer'

Die Messwerte werden alle 24 Stunden ausfallsicher im Stellungsregler gespeichert.

Kurzzeitbetrachtung

Um kurzfristige Änderungen der Ventilstellung erkennen zu können, erfasst der Stellungsregler die Ventilstellung mit der eingestellten 'Abtastzeit Kurzzeithistogramm' und wertet jeweils die letzten 100 Messwerte aus.

 – 'Mittelwert x Kurz': Über die letzten 100 Messwerte gemittelte Intervallzugehörigkeit der Ventilstellung

Beobachterfunktionen

Der Stellungsregler speichert die Ventilstellungen in einem Ringspeicher mit einer Speichertiefe von 100 Messwerten.

i Info

Bei Änderung der 'Abtastzeit Kurzzeithistogramm' werden alle vorhandenen Messwerte aus dem Ringspeicher gelöscht.

Parametrierung

- 'Abtastzeit Kurzzeitbetrachtung' einstellen
- 2. Statusmeldungen klassifizieren.

Diagnose > Beobachterfunktionen > Histogramm Ventilstellung x > Kurzzeitbetrachtung

1. – Abtastzeit Kurzzeitbetrachtung: 1 bis 3600 s, [1 s] 1)

Typ 3730-2/-3/-4/-5 (1.5x) und 3731-3:

Einstellungen > Stellungsregler > Fehlerüberwachung > Statusklassifikation > Erweitert >

- 2. Trend Stellbereich
 - Arbeitsbereichsverschiebung Schließstellung: [⊗], ⋄, ⊗, (♥), (▲)
 - Arbeitsbereichsverschiebung max. Öffnung: $[\bigotimes]$, \bigotimes , \bigotimes , (\bigvee) , (\bigwedge)

Stellbereich

- Vorwiegend nahe Schließstellung:
 [⊗], ⋄, ⊗, (♥), (♠)
- Vorwiegend nahe max. Öffnung:
 [⊗], ⋄, ⊗, (♥), (♠)
- Vorwiegend Schließstellung:
 [○], ♠, ∞, (♥), (♠)
- Vorwiegend max. Öffnung:
 [⊗], ♠, ⊗, (♥), (♠)

Typ 3730-5 (1.6x) und 3731-5:

Einstellungen > Stellungsregler > Diagnosekonfiguration > Klassifikation

- 2. Trend Stellbereich: [⊗], ♦, ⊗, ♥, ♠
- 1) Typ 3730-4: [864 s]

4.3.1 Auswertung und Überwachung

Die Auswertung des Histogramms beginnt bei Regelventilen nach einer Betrachtungsdauer von einer Stunde. Bei Auf/Zu-Ventilen erfolgt keine Auswertung.

Arbeitet das Regelventil während der Betrachtungsdauer vorwiegend nahe oder in einer der Endlagen, generiert der Stellungsregler die Meldung 'Stellbereich' entsprechend der eingestellten Statusklassifikation.

Für die Auswertung der Kurzzeitbetrachtung ist ein kompletter Datensatz (100 Messwerte) erforderlich.

Ergibt sich aus der Auswertung des Histogramms und der Kurzzeitbetrachtung ein Trend für die Änderung des Arbeitsbereichs, generiert der Stellungsregler die Meldung 'Trend Stellbereich' entsprechend der eingestellten Statusklassifikation

Diagnose > Statusmeldungen > Erweitert

- Trend Stellbereich
- Stellbereich 1)
- ¹⁾ nicht Typ 3730-5 (1.6x) und 3731-5

4.3.2 Einzelnes Rücksetzen

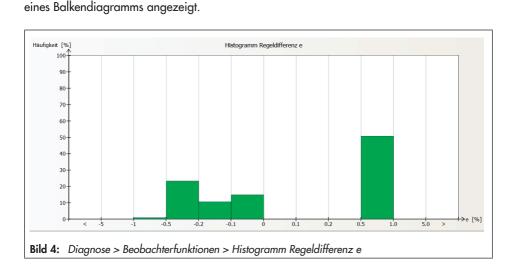
Die Meldungen 'Stellbereich' und 'Trend Stellbereich' werden über den Befehl 'Rücksetzen 'Histogramm Ventilstellung x'' zurückgesetzt. Mit diesem Befehl werden gleichzeitig alle Diagnoseparameter und Messwerte des Histogramms und der Kurzzeitbetrachtung zurückgesetzt.

Mit dem Befehl 'Rücksetzen 'Histogramm Ventilstellung x – Kurzzeitbetrachtung'' werden nur die Diagnoseparameter und Messwerte im Verzeichnis **Kurzzeitbetrachtung** zurückgesetzt.

Betrieb > Rücksetzen

- Rücksetzen 'Histogramm Ventilstellung x'
- Rücksetzen 'Histogramm Ventilstellung x Kurzzeitbetrachtung'

4.4 Histogramm Regeldifferenz e


3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	•	•

Das 'Histogramm Regeldifferenz e' ist eine statistische Auswertung der aufgenommenen Regeldifferenzen. Es gibt Aufschluss darüber, in welcher Höhe die Regeldifferenzen während der Lebenszeit des Stellventils auftreten und ob möglicherweise Fehlzustände auf Grund eines beschränkten Stellbereichs oder innerer Leckage vorliegen.

Die Datenaufnahme erfolgt – unabhängig von der eingestellten Betriebsart – im Hintergrund, eine Aktivierung ist nicht erforderlich. Der Stellungsregler nimmt sekündlich die *Regeldifferenz* e auf und ordnet sie vorgegebenen Intervallen (Klassen) zu. Die Intervalle der Regeldifferenz werden grafisch in Form

- 'Mittelwert e Lang': Über die 'Betrachtungsdauer' gemittelte Intervallzugehörigkeit der Regeldifferenz
- 'Anzahl Messpunkte': Summe der während der 'Betrachtungsdauer' aufgenommenen Messwerte
- Betrachtungsdauer'
- Betrag der max. Regeldifferenz' (nicht Typ 3730-4): Die über die Betrachtungsdauer größte gemessene Regeldifferenz
- 'Min. Regeldifferenz' (nur Typ 3730-4):
 Die über die Betrachtungsdauer kleinste gemessene Regeldifferenz
- 'Max. Regeldifferenz' (nur Typ 3730-4):
 Die über die Betrachtungsdauer größte gemessene Regeldifferenz

Die Messwerte werden alle 24 Stunden ausfallsicher im Stellungsregler gespeichert.

Kurzzeitbetrachtung

Um kurzfristige Änderungen der Regeldifferenz erkennen zu können, erfasst der Stellungsregler die Regeldifferenzen mit der eingestellten 'Abtastzeit Kurzzeithistogramm' und wertet jeweils die letzten 100 Messwerte aus.

 'Mittelwert e Kurz': Über die letzten 100 Messwerte gemittelte Intervallzugehörigkeit der Regeldifferenz

Der Stellungsregler speichert die Regeldifferenzen in einem Ringspeicher mit einer Speichertiefe von 100 Messwerten.

i Info

Bei Änderung der 'Abtastzeit Kurzzeithistogramm' werden alle vorhandenen Messwerte aus dem Ringspeicher gelöscht.

Parametrierung

- 'Abtastzeit Kurzzeitbetrachtung' einstellen
- 2. Statusmeldungen klassifizieren.

Diagnose > Beobachterfunktionen > Histogramm Regeldifferenz e > Kurzzeitbetrachtung

1. – Abtastzeit Kurzzeitbetrachtung: 1 bis 3600 s, [1 s] 1)

Typ 3730-2/-3/-4/-5 (1.5x) und 3731-3:

Einstellungen > Stellungsregler > Fehlerüberwachung > Statusklassifikation > Erweitert > ...

- 2. Beschränkung Stellbereich
 - Nach unten: [⊗], �, ⊗, (♥), (♠)
 - Nach oben: [⊗], �, ⊗, (♥), (♠)

- Keine Änderung möglich (Klemmen): [⊘], ♠, ⋈, (♥), (♠)

Mechanische Verbindung Stellungsregler/ Ventil

- Keine optimale Hubübertragung (TEST): [⊗], ♦, ⊗, (♥), (♠)
- Eventuell lose/(TEST): [⊗], ♦, ⊗, (♥), (♠)
- Eventuell Einschränkung Stellbereich:
 [⊗], ♠, ⊗, (♥), (♠)

Innere Leckage

- Eventuell vorhanden:
- $[\otimes]$, \Leftrightarrow , \otimes , (Ψ) , (\wedge)

Typ 3730-5 (1.6x) und 3731-5:

Einstellungen > Stellungsregler > Diagnosekonfiguration > Klassifikation

- 2. Beschränkung Stellbereich:
 - [⊗], �, **⊗**, **₩**, <u>∧</u>
 - Mech. Verbindung STR/Ventil:
 - [⊗], �, **⊗**, **₩**, <u>∧</u>
 - Innere Leckage: [⊗], �, ⊗, ♥, ∱
- Typ 3730-4: [864 s]

4.4.1 Auswertung und Überwachung

Die Auswertung des Histogramms beginnt nach einer Betrachtungsdauer von einer Stunde.

Im Idealfall sollten die Regeldifferenzen nahe 0 % sein.

In kurzer Folge auftretende Regeldifferenzen größer 1 % weisen auf eine Beschränkung des Stellbereichs nach oben hin. In diesem Fall generiert der Stellungsregler die Meldung 'Beschränkung Stellbereich' entsprechend der eingestellten Statusklassifikation.

Beobachterfunktionen

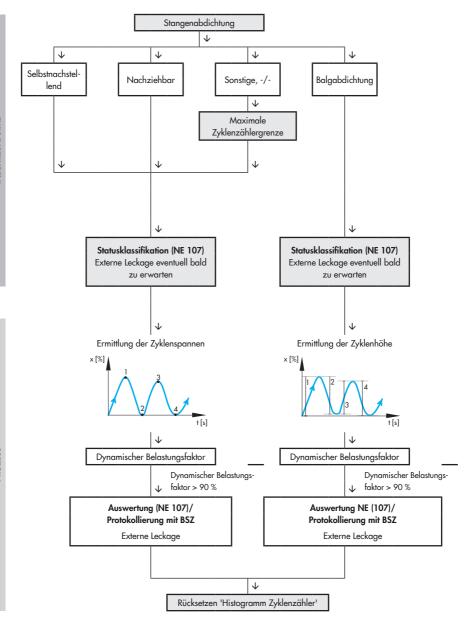
In kurzer Folge auftretende Regeldifferenzen kleiner 1 % weisen auf eine Beschränkung des Stellbereichs nach unten oder auf eine innere Leckage hin. Der Stellungsregler generiert die Meldungen 'Beschränkung Stellbereich' und 'Innere Leckage' entsprechend der eingestellten Statusklassifikationen.

Sind nahezu alle Regeldifferenzen der Kurzzeitbetrachtungen größer 1 % oder kleiner –1 % weist das auf ein Klemmen der Antriebs- oder Ventilstange hin. Der Stellungsregler generiert die Meldungen 'Beschränkung Stellbereich' und 'Mech. Verbindung Stellungsregler/Ventil' entsprechend der eingestellten Statusklassifikationen.

Diagnose > Statusmeldungen > Erweitert

- Beschränkung Stellbereich
- Mechanische Verbindung Stellungsregler/ Ventil
- Innere Leckage

Mit dem Befehl 'Rücksetzen 'Histogramm Regeldifferenz e - Kurzzeitbetrachtung' werden nur die Diagnoseparameter und Messwerte im Verzeichnis **Kurzzeitbetrachtung** zurückgesetzt.


Betrieb > Rücksetzen

- Rücksetzen 'Histogramm Regeldifferenz e'
- Rücksetzen 'Histogramm Regeldifferenz e Kurzzeitbetrachtung'

4.4.2 Finzelnes Rücksetzen

Die Meldungen 'Innere Leckage' und 'Beschränkung Stellbereich' werden über den Befehl 'Rücksetzen 'Histogramm Regeldifferenz e'' oder 'Rücksetzen 'Histogramm Regeldifferenz e - Kurzzeitbetrachtung' zurückgesetzt. Die Meldung 'Mech. Verbindung Stellungsregler/Ventil' wird über den Befehl 'Histogramm Regeldifferenz e - Kurzzeitbetrachtung' zurückgesetzt.

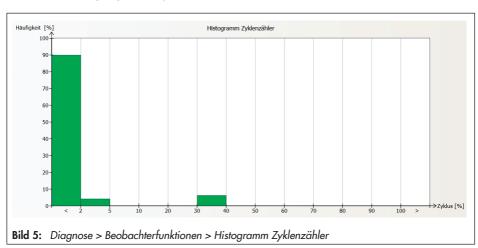
Mit dem Befehl 'Rücksetzen 'Histogramm Regeldifferenz e'' werden gleichzeitig alle Diagnoseparameter und Messwerte des Histogramms und der Kurzzeitbetrachtung zurückgesetzt.

4.5 Histogramm Zyklenzähler

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	•	•

Das 'Histogramm Zyklenzähler' liefert eine statistische Auswertung der Zyklenspanne bzw. Zyklenhöhe und damit Informationen über die dynamische Beanspruchung des Balgs und/oder der vorhandenen Packung. Die Datenaufnahme erfolgt – unabhängig von der eingestellten Betriebsart – im Hintergrund, eine Aktivierung ist nicht erforderlich. Der Stellungsregler nimmt bei 'Stangenabdichtung' "Selbstnachstellend", "Nachziehbar", "Sonstige" und "-/-" die Anzahl der Zyklenspannen auf. Eine Zyklenspanne beginnt bei einer Richtungsumkehr des Ventilhubs und endet bei der nächsten Richtungsumkehr des Ventilhubs.

Bei 'Stangenabdichtung' "Balgabdichtung" nimmt der Stellungsregler die Zyklenhöhe auf. Die Zyklenhöhe ist der zurückgelegte Hub zwischen zwei Richtungsänderungen.


Die Zyklenspannen bzw. Zyklenhöhen werden vorgegebenen Intervallen (Klassen) zugeordnet. Die Intervalle werden grafisch in Form eines Balkendiagramms angezeigt.

- 'Mittelwert z Lang': Über die 'Anzahl Messpunkte' gemittelte Intervallzugehörigkeit der Zyklenhöhe
- 'Anzahl Messpunkte': Summe der aufgenommenen Messwerte

Die Messwerte werden alle 24 Stunden ausfallsicher im Stellungsregler gespeichert.

Kurzzeitbetrachtung

Um kurzfristige Änderungen der Zyklenspannen bzw. der Zyklenhöhe erkennen zu können, wertet der Stellungsregler jeweils die letzten 100 Zyklenspannen bzw. Zyklenhöhen aus.

Der Stellungsregler speichert die Zyklenspannen in einem Ringspeicher mit einer Speichertiefe von 100 Messwerten.

 'Mittelwert z Kurz': Über die letzten 100 Messwerte gemittelte Intervallzugehörigkeit der Zyklenhöhe

Parametrierung

- Art der Stangenabdichtung vorgeben.
 Bei 'Stangenabdichtung' = "Sonstige" ist zusätzlich der Parameter 'Maximale Zyklenzählergrenze' einzustellen.
- 2. Statusmeldungen klassifizieren.

Einstellungen > Identifikation > Stellungsregler > Ventil

- Stangenabdichtung:
 [-/-], Selbstnachstellend, Nachziehbar,
 Balgabdichtung, Sonstige
 - Maximale Zyklenzählergrenze ¹⁾:
 1 bis 1000000000, [1000000]

Typ 3730-2/-3/-4/-5 (1.5x) und 3731-3:

Einstellungen > Stellungsregler > Fehlerüberwachung > Statusklassifikation > Erweitert > ...

- Externe Leckage
 - Eventuell bald zu erwarten: $[\otimes]$, \Leftrightarrow , (\mathbf{Y}) , (\wedge)

Typ 3730-5 (1.6x) und 3731-5:

Einstellungen > Stellungsregler > Diagnosekonfiguration > Klassifikation

- 2. Externe Leckage: [⊗], �, ⊗, ♥, ⚠
- Einstellung nur mit 'Stangenabdichtung' = Sonstige

4.5.1 Auswertung und Überwachung

Die Auswertung des Histogramms beginnt direkt nach Übergang in den Hand- oder Automatikbetrieb.

Die Beanspruchung des Balgs und/oder der Packung kann am Parameter 'Dynamischer Belastungsfaktor' abgelesen werden. Der Wert wird unter Berücksichtigung der im Ventil befindlichen Stopfbuchse aus den Zyklenspannen bzw. Zyklenhöhen ermittelt.

Es wird eine Meldung 'Externe Leckage' entsprechend der eingestellten Statusklassifikation 'Eventuell bald zu erwarten' gesetzt, wenn

- die Anzahl der gemessenen Zyklenspannen bei 'Stangenabdichtung' "Selbstnachstellend" 450000 überschreitet.
- die Anzahl der gemessenen Zyklenspannen bei 'Stangenabdichtung' "Nachziehbar" 180000 überschreitet.
- die Anzahl der gemessenen Zyklenspannen bei 'Stangenabdichtung' "Sonstige"
 90 % der 'Maximalen Zyklenzählergrenze' überschreitet.
- die Anzahl der gemessenen Zyklenhöhen bei 'Stangenabdichtung' "Balgabdichtung" 180000 überschreitet.

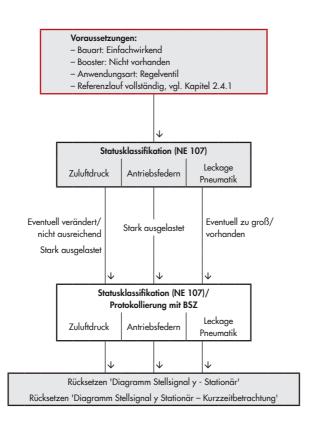
Diagnose > Beobachterfunktionen > Histogramm Zyklenzähler

- Dynamischer Belastungsfaktor

Diagnose > Statusmeldungen > Erweitert

Externe Leckage

4.5.2 Einzelnes Rücksetzen


Die Meldung 'Externe Leckage' wird über den Befehl 'Rücksetzen 'Histogramm Zyklenzähler'' zurückgesetzt.

Mit dem Befehl 'Rücksetzen 'Histogramm Zyklenzähler'' werden gleichzeitig alle Messwerte des Histogramms und der Kurzzeitbetrachtung sowie der 'Dynamische Belastungsfaktor' zurückgesetzt.

Mit dem Befehl 'Rücksetzen 'Histogramm Zyklenzähler – Kurzzeitbetrachtung'' werden die Messwerte im Verzeichnis **Kurzzeitbetrachtung** zurückgesetzt.

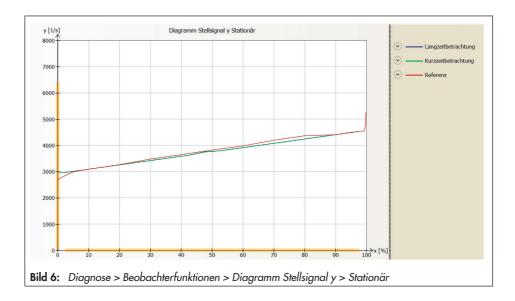
Betrieb > Rücksetzen

- Rücksetzen 'Histogramm Zyklenzähler'
- Rücksetzen 'Histogramm Zyklenzähler Kurzzeitbetrachtung'

4.6 Diagramm Stellsignal y Stationär

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	•	•

Das 'Diagramm Stellsignal y Stationär' zeichnet das *Stellsignal y* in Abhängigkeit von der *Ventilstellung x* auf.


Das Stellsignal y ist der interne Stellsignalwert des i/p-Umformers. In Abhängigkeit der Ventilstellung x ist dieses Signal proportional zum Stelldruck p_{out} im pneumatischen Antrieb.

Mit Hilfe der Beobachterfunktion 'Stellsignals y Stationär' können Fehlzuständen beim Zuluftdruck, in der Pneumatik und bei den Antriebsfedern erkannt werden.

Die Datenaufnahme erfolgt – unabhängig von der eingestellten Betriebsart – im Hintergrund, eine Aktivierung ist nicht erforderlich. Im Regelbetrieb ermittelt der Stellungsregler nach einer Druckberuhigung (stationärer Zustand) die Ventilstellung x und das zugehörige Stellsignal y. Das aufgenommene Messwertepaar wird in feste Ventilstellungsintervalle (Klassen) eingeteilt. Der Mittelwert des Stellsignals wird pro Klasse bestimmt, gespeichert und ist auslesbar. Das gemittelte Stellsignal y wird über die Ventilstellung x dargestellt.

i Info

 Ventilstellungen, die noch nicht angefahren wurden oder bei denen sich kein stationärer Zustand eingestellt hat, können nicht

Beobachterfunktionen

- dargestellt werden, hier werden die Referenzwerte verwendet.
- Ist die Funktion 'Aktivierung bei Endlage kleiner aktiv' (Dichtschließfunktion, Code 14) und fährt das Ventil den Wert 'Endlage bei w kleiner' an, werden keine Messwerte aufgenommen.

Kurzzeitbetrachtung

Um kurzzeitige Änderungen des Antriebsdrucks bei verschiedenen *Ventilstellungen x* zu erkennen, wird der Mittelwert des *Stellsignals y* aus den letzten Messwerten pro Ventilstellungsklasse bestimmt.

Der Stellungsregler speichert das *Stellsig-nal y* und die *Ventilstellung x* in einem Ringpuffer mit einer Speichertiefe von zehn Messwerten. Jeweils die letzten zehn aufgenommenen Messwerte werden in den Ordnern **Stellsignal** und **Ventilstellung** aufgelistet.

Voraussetzungen

- Am eingesetzten Stellventil ist ein einfachwirkender Antrieb angebaut.
- Am eingesetzten Stellventil ist kein Booster angebaut.
- Das Stellventil wird als Regelventil betrieben
- Es wurde ein Referenzlauf durchgeführt, vgl. Kapitel 2.4.1.

Einstellungen > Identifikation > Stellungsregler > Antrieb

- 1. Bauart: Einfachwirkend, [-/-]
 - Booster: Nicht vorhanden, [-/-]

Inbetriebnahme

- 3. Anwendungsart 1) (Code 49 h0): [Regelventil]
- 1) Einstellung beim Typ 3730-4 nicht möglich. Hier gilt immer: Anwendungsart = Regelventil

Parametrierung

1. Statusmeldungen klassifizieren.

Typ 3730-2/-3/-4/-5 (1.5x) und 3731-3:

Einstellungen > Stellungsregler > Fehlerüberwachung > Statusklassifikation > Erweitert >

- 1. Zuluftdruck
 - Eventuell verändert 1):
 - [igotimes], igotimes, igotimes, (igotimes]), (igotimes]
 - Eventuell nicht ausreichend:
 [⊗], ⋄, ∞, (♥), (♠)
 - Stark ausgelastet: [igotimes], igotimes, igotimes, (igotimes]), (igwedge)

Leckage Pneumatik

- Eventuell zu groß: [⊗], �, ⊗, (♥), (⚠)
- Eventuell vorhanden $^{1)}$: $[\bigotimes]$, \bigotimes , \bigotimes , (\bigvee) , (\bigwedge)

Antriebsfedern

- Stark ausgelastet: [⊗], ♦, ⊗, (♥), (♠)

Typ 3730-5 (1.6x) und 3731-5:

Einstellungen > Stellungsregler > Diagnosekonfiguration > Klassifikation

- 1. Zuluftdruck: [⊗], �, ⊗, ₩, ⚠
 - Leckage Pneumatik: [⊗], ♦, ♥, ♥
 - Antriebsfedern: [⊗], ♦, Ø, ♥, ∧
- 2) nicht Typ 3730-4 und Typ 3730-5 (1.5x)

4.6.1 Auswertung und Überwachung

Die Auswertung des Stellsignals beginnt bei Regelventilen nach einer Betrachtungsdauer von einer Stunde. Bei Auf/Zu-Ventilen erfolgt keine Auswertung.

Aus einem Vergleich der während des Betriebs gemessenen Abhängigkeit des *Stellsignals y* zur *Ventilstellung x* mit der Referenzkurve lassen sich folgende Effekte ablesen:

- Das Stellsignal y verschiebt sich gegenüber der Referenzkurve bei gleichzeitig ansteigender Steigung nach unten.
- Das Stellsignal y verschiebt sich ab einer bestimmten Ventilöffnung kontinuierlich gegenüber der Referenzkurve nach oben, wenn eine signifikante Leckage im pneumatischen System infolge undichter Verschraubungen oder eines Membranrisses auftritt. Der Stellungsregler generiert die Meldung 'Leckage Pneumatik' entsprechend der eingestellten Statusklassifikation.
- Das Stellsignal y folgt zunächst der Referenzkurve und steigt dann nahezu stetig
 an. Dieses Verhalten weist darauf hin,
 dass der Zuluftdruck nicht ausreicht, um
 den gesamten Ventilstellbereich zu
 durchfahren. Der Stellungsregler generiert die Meldung 'Zuluftdruck' entsprechend der eingestellten Statusklassifikation.
- Das Stellsignal y verschiebt sich bei gleichzeitig geringerer Steigung gegenüber der Referenzkurve nach unten, wenn bei einem Stellventil mit Sicherheitsstellung "Feder schließt" die Feder-

kraft reduziert ist. Der Stellungsregler generiert die Meldung 'Antriebsfedern' entsprechend der eingestellten Statusklassifikation

Diagnose > Statusmeldungen > Erweitert

- Zuluftdruck
- Leckage Pneumatik
- Antriebsfedern

i Info

Wenn es der Prozess zulässt, können die Ergebnisse der Beobachterfunktion mit Hilfe der Testfunktion überprüft werden, vgl. Kapitel 5 1

4.6.2 Einzelnes Rücksetzen

Die Meldungen 'Zuluftdruck', 'Leckage Pneumatik' und 'Antriebsfedern' werden über den Befehl 'Rücksetzen 'Diagramm Stellsignal y Stationär' oder 'Rücksetzen 'Diagramm Stellsignal y Stationär – Kurzzeitbetrachtung' zurückgesetzt.

Mit dem Befehl 'Rücksetzen 'Diagramm Stellsignal y Stationär' werden gleichzeitig alle Messwerte des Diagramms, auch die der Kurzzeitbetrachtung zurückgesetzt. Mit dem Befehl 'Rücksetzen 'Diagramm Stellsignal y Stationär – Kurzzeitbetrachtung' werden nur die Messwerte im Verzeichnis Kurzzeitbetrachtung zurückgesetzt.

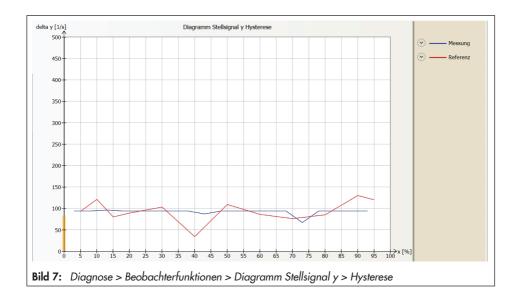
Betrieb > Rücksetzen

- Rücksetzen 'Diagramm Stellsignal y Stationär'
- Rücksetzen 'Diagramm Stellsignal y Stationär Kurzzeitbetrachtung'

4.7 Diagramm Stellsignal y Hysterese

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	•	•

Das 'Diagramm Stellsignal y Hysterese' zeichnet die *Stellsignaländerung* Δy in Abhängigkeit von der *Ventilstellung x* auf.


Das Stellsignal y ist der interne Stellsignalwert des i/p-Umformers. In Abhängigkeit der Ventilstellung x ist dieses Signal proportional zum Stelldruck p_{out} im pneumatischen Antrieb.

Mit Hilfe der Beobachterfunktion 'Stellsignals y Hysterese' werden bei den Typ 3730-2/3 und 3731-3/-5 Änderungen von Reibkräften analysiert.

Die Datenaufnahme erfolgt nach Aktivierung des Hysteresetests. Er kann einmalig (sofortige Testdurchführung) oder turnusmäßig nach Ablauf des eingestellten Testintervalls erfolgen.

Für die Dauer des Hysteresetests werden nachfolgend aufgeführte Parameter gesetzt:

- Hub-/Drehwinkelbereich Anfang (Code 8): 0 %
- Hub-/Drehwinkelbereich Ende (Code 9): 100 %
- Aktivierung Hub-/Drehwinkelbegrenzung unten (Code 10): Aus
- Aktivierung Hub-/Drehwinkelbegrenzung oben (Code 11): Aus
- Aktivierung Endlage bei w kleiner (Code 14): Aus

Beobachterfunktionen

- Aktivierung Endlage bei w größer (Code 15): Aus
- Gewünschte Laufzeit auf (Code 21): variabel
- Gewünschte Laufzeit zu (Code 22): variabel

Ausgehend vom Arbeitspunkt wird der Test mit einer Hubänderung kleiner ein Prozent durchgeführt und die *Stellsignaländerung* Δy ermittelt. Die *Stellsignaländerungen* Δy werden entsprechend der *Ventilstellung x* in Ventilstellungsintervalle (Klassen) eingeteilt. Pro Ventilstellungsintervall wird der Mittelwert Δy aus allen Werten gebildet und grafisch in der Kurve "Messung" dargestellt.

i Info

- Wird der Test im Handbetrieb mit der Einstellung 'Aktivierung Zeitabstand' = "Benutzerdefiniert" gestartet und ist zum Startzeitpunkt ein anderer Test aktiv, dann wird der Hysteresetest 30 Sekunden nach Beendigung des aktiven Tests gestartet.
- Ventilstellbereiche, die durch die Langzeitbetrachtung nicht abgedeckt wurden, werden als gemittelte Gerade der Referenz abgebildet.
- Kann der Hysteresetest nicht vollständig durchgeführt werden, weil sich die Ventilstellung an der oberen oder unteren Grenze des Stellbereichs befindet, meldet der Stellungsregler (Anzeige Testinformation "Test im Arbeitspunkt nicht möglich").

Kurzzeitbetrachtung

Um einen kurzfristigen Überblick (Trend) zu erkennen, sind im Ordner **Kurzzeitbetrachtung** die letzten zehn *Ventilstellungen x* und die dazu ermittelten *Stellsignaländerungen* Δy aufgelistet.

Voraussetzungen

- Am eingesetzten Stellventil ist ein einfachwirkender Antrieb angebaut.
- Am eingesetzten Stellventil ist kein Booster angebaut.
- Das Stellventil wird als Regelventil betrieben.
- 4. Es wurde ein Referenzlauf durchgeführt, vgl. Kapitel 2.4.1.

Einstellungen > Identifikation > Stellungsregler > Antrieb

- 1. Bauart: Einfachwirkend, [-/-]
- 2. Booster: Nicht vorhanden, [-/-]

Inbetriebnahme

- 3. Anwendungsart 1) (Code 49 h0): [Regelventil]
- Einstellung beim Typ 3730-4 nicht möglich. Hier gilt immer: Anwendungsart = Regelventil

Parametrierung

- 1. Statusmeldungen klassifizieren.
- Abbruchbedingung einstellen, vgl. Kapitel 4.7.1.
- 3. Startbedingungen parametrieren.
- Hysteresetest starten.
 Die Anzeige 'Testinformation' meldet "Testdurchführung". Der Stellungsregler zeigt im Wechsel "d5" und "tESt" an.

Der Sammelstatus \(\psi \) 'Funktionskontrolle' wird gesetzt.

Typ 3730-2/-3/-4/-5 (1.5x) und 3731-3:

Einstellungen > Stellungsregler > Fehlerüberwachung > Statusklassifikation > Erweitert >

- 1. Reibung
 - Über ganzen Stellbereich deutlich höher $^{1)}$: $[\bigotimes]$, \bigotimes , \bigotimes , (\bigvee) , (\bigwedge)
 - Über ganzen Stellbereich deutlich niedriger ¹¹:
 [⊗], ⋄, ⊗, (▼), (∧)
 - Über Teilbereich deutlich höher ¹¹:
 [⊗], ♦, Ø, (♥), (♠)
 - Über Teilbereich deutlich niedriger ¹¹:
 [⊗], ♠, ⊗, (♥), (♠)

Typ 3730-5 (1.6x) und 3731-5:

Einstellungen > Stellungsregler > Diagnosekonfiguration > Klassifikation

1. – Reibung: [⊗], ♦, ⊗, ♥, ∧

Diagnose > Beobachterfunktionen > Diagramm Stellsignal y > Hysterese

- 2. Toleranzband der Hysterese: 1 bis 5 %, [5 %]
- 3. Aktivierung Zeitabstand ²⁾: [Benutzerdefiniert], Sofort
 - Zeitlicher Mindestabstand: 1 bis 24 h, [1 h]
- 4. Start Testlauf
- nicht Typ 3730-4/-5 (1.5x)
- ²⁾ nicht Typ 3730-5 (1.5x) und Typ 3730-x (1.6x)

i Info

Über den Befehl 'Abbruch Testlauf' oder durch Drücken des Dreh-/Druckknopfs wird der Test abgebrochen.

4.7.1 Auswertung und Überwachung

Der Test wird durch den Parameter 'Toleranzband der Hysterese' überwacht:

- Verlässt die Ventilstellung x während der Testphase das 'Toleranzband der Hysterese', wird der Test sofort abgebrochen und der Stellungsregler geht in den Regelbetrieb über.
- Tritt eine Sollwertänderung Δw auf, die größer als das 'Toleranzband der Hysterese' ist, wird der Test abgebrochen und nach einer Wartezeit von 30 Sekunden bei dem neuen Arbeitspunkt aktiviert. Sollte auch dieser Testlauf durch eine Sollwertänderung Δw abgebrochen werden, so wird er bei dem sich einstellenden Arbeitspunkt nach einer Wartezeit von 60 Sekunden erneut aktiviert. Dies ist insgesamt zehnmal möglich, wobei sich die Wartezeit immer um jeweils 30 Sekunden erhöht (Anzahl der Wiederholungen x 30 s). Nach dem zehnten Testabbruch wird dann wieder der defi-

Weist die Auswertung der Hysterese auf einen Fehler "Reibung" oder "Externe Leckage" hin, generiert der Stellungsregler eine entsprechende Meldung.

nierte Parameter 'Zeitl, Mindestabstand'

Diagnose - Statusmeldung > Erweitert

- Reibung 1)

eingehalten.

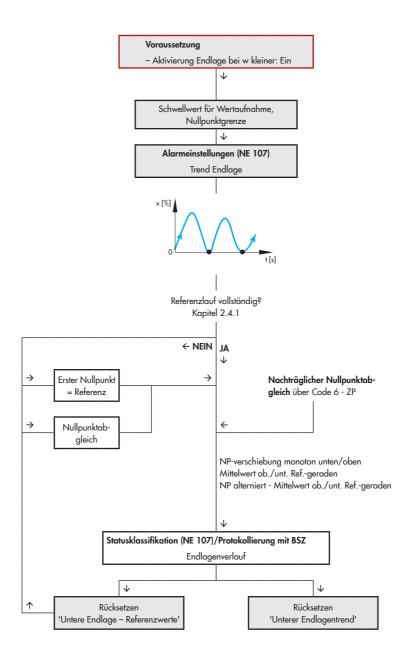
1) nicht Typ 3730-4/-5 (1.5x)

Beobachterfunktionen

i Info

Wenn es der Prozess zulässt, können die Ergebnisse der Beobachterfunktion mit Hilfe der Testfunktion überprüft werden, vgl. Kapitel 5.2.

4.7.2 Einzelnes Rücksetzen


Die Meldungen 'Reibung' und 'Externe Leckage' werden über den Befehl 'Rücksetzen 'Diagramm Stellsignal y Hysterese'' oder 'Rücksetzen 'Diagramm Stellsignal y Hysterese – Kurzzeitbetrachtung'' zurückgesetzt.

Mit dem Befehl 'Rücksetzen 'Diagramm Stellsignal y Hysterese'' werden gleichzeitig alle Messwerte des Diagramms, auch die der Kurzzeitbetrachtung zurückgesetzt.

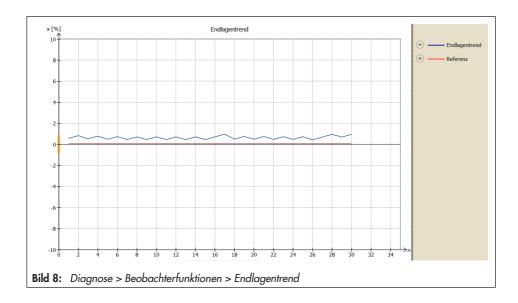
Mit dem Befehl 'Rücksetzen 'Diagramm Stellsignal y Hysterese – Kurzzeitbetrachtung'' werden nur die Messwerte im Verzeichnis **Kurzzeitbetrachtung** zurückgesetzt.

Betrieb > Rücksetzen

- Rücksetzen 'Diagramm Stellsignal y Hysterese'
- Rücksetzen 'Diagramm Stellsignal y Hysterese Kurzzeitbetrachtung'

4.8 Endlagentrend

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	•	•


Über den 'Endlagentrend' kann sowohl ein alternierender Nullpunkt als auch eine schleichende Nullpunktverschiebung auf Grund von Verschleiß an Sitz und Kegel oder auf Grund von Verschmutzungen erkannt werden

Die Datenaufnahme erfolgt unabhängig von der eingestellten Betriebsart im Hintergrund, wenn die Dichtschließfunktion aktiv ist (Code 14), eine Aktivierung der Datenaufnahme ist nicht erforderlich.

Der Endlagenverlauf erfasst beim Anfahren der unteren Endlage die Ventilstellung x und das Stellsignal y zusammen mit dem Zeitstempel des Betriebsstundenzählers. Die neu erfasste Ventilstellung wird mit dem zuletzt gespeicherten Nullpunkt verglichen. Weicht die Ventilstellung um den 'Schwellwert für Wertaufnahme' vom letzten Wert ab, werden die Daten des neuen Nullpunkts gespeichert

Die gespeicherten Ventilstellungen der unteren Endlage werden grafisch über die Anzahl der Messungen dargestellt.

Der Stellungsregler speichert die Ventilstellungen in einem Ringpuffer mit einer Speichertiefe von 30 Messwerten. Die aufgenommenen Messwerte werden im Verzeichnis **Untere Endlage** aufgelistet.

Parametrierung

- Dichtschließfunktion aktivieren.
- Speicherbedingungen für Referenzwert und Nullpunkt einstellen, vgl. Kapitel 4.8.1.
- 3. Statusmeldungen klassifizieren.

Einstellungen > Stellungsregler > Führungsgröße

- Aktivierung Endlage bei w kleiner (Code 14): [Ein]
 - Endlage bei w kleiner (Code 14):0.0 bis 49.9 %, [1.0 %]

Diagnose > Beobachterfunktionen > Endlagentrend

2. – Schwellwert für die Wertaufnahme ¹⁾: 0.10 bis 5.00 %, [0.25 %]

Einstellungen > Stellungsregler > Fehlerüberwachung

Nullpunktgrenze (Code 48 - d5):0.0 bis 100.0 %, [5.0 %]

Typ 3730-2/-3/-4/-5 (1.5x) und 3731-3:

Einstellungen > Stellungsregler > Fehlerüberwachung > Statusklassifikation > Erweitert > ...

- 3. Trend Endlage
 - NP-Verschiebung monoton unten Mittelwert ob. Ref.-Geraden: [⟨∑], ⟨♠, (▼), (♠)
 - NP-Verschiebung monoton oben Mittelwert ob. Ref.-Geraden: [⊗], ⋄, ⊗, (♥), (♠)
 - NP alterniert Mittelwert ob. Ref.-Geraden:
 - NP-Verschiebung monoton unten Mittelwert unt. Ref.-Geraden: [⊗], ⋄, ⊗, (♥), (♠)

- NP-Verschiebung monoton oben Mittelwert unt. Ref.-Geraden: [⊗], ⋄, ⊗, (♥), (♠)
- NP alterniert Mittelwert unt. Ref.-Geraden: [⊗], �, ❷, ♥, (♥), (♠)

Typ 3730-5 (1.6x) und 3731-5:

Einstellungen > Stellungsregler > Diagnosekonfiguration > Klassifikation

- 3. Trend Endlage: [⊗], �, Ø, ♥, ∧
- 1) nicht Typ 3730-4

4.8.1 Auswertung und Überwachung

Die Auswertung des Histogramms beginnt direkt nach Übergang in den Hand- oder Automatikbetrieb.

Für die Auswertung des Endlagentrends ist die Aufnahme des Referenz-Nullpunkts notwendig. Dieser wird während des Referenzlaufs ermittelt, vgl. Kapitel 2.4.1. Wenn der Referenzlauf nicht durchgeführt wurde, dient der erstmalig angefahrene Nullpunkt als Referenzwert. Der Referenzwert wird im Diagramm 'Endlagentrend' als Gerade dargestellt.

i Info

Wurde der Referenzwert zurückgesetzt (Befehl 'Rücksetzen 'Untere Endlage - Referenzwerte'', vgl. Kapitel 3.2.1), dann wird der erstmalig nach dem Rücksetzen angefahrene Nullpunkt nur dann als neuer Referenzwert übernommen, wenn er die 'Nullpunktgrenze' nicht überschreitet

Weist die Auswertung des Endlagentrends auf einen Fehler hin, generiert der Stellungsregler die Meldung 'Trend Endlage' entsprechend der eingestellten Statusklassifikation.

Diagnose > Statusmeldungen > Erweitert

- Trend Endlage

4.8.2 Einzelnes Rücksetzen

Die Meldung 'Trend Endlage' und die Messwerte des Endlagentrends werden über den Befehl 'Rücksetzen 'Unterer Endlagentrend'' zurückgesetzt.

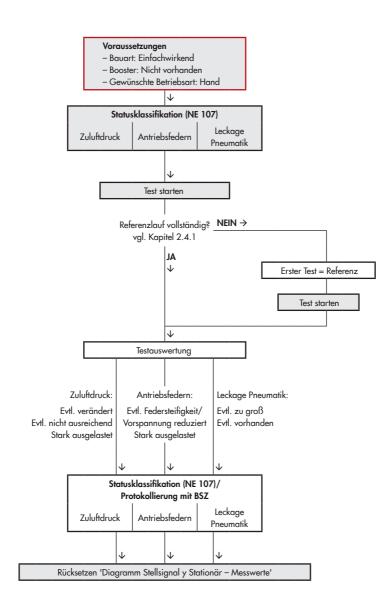
Soll nur der Referenz-Nullpunkt zurückgesetzt werden, ist dies über den Befehl 'Rücksetzen 'Untere Endlage – Referenzwerte'' möglich.

Betrieb > Rücksetzen

- Rücksetzen 'Unterer Endlagentrend'
- Rücksetzen 'Untere Endlage Referenzwerte'

5 Testfunktionen

Aus Sicherheitsgründen lassen sich die Testfunktionen nur starten, wenn sich der Stellungsregler im Handbetrieb befindet.


9 HINWEIS

Während der Testfunktionen durchfährt das Stellventil den vorgegebenen Stellbereich. Vor dem Teststart ist daher sicherzustellen, dass die Anlage und der Prozess das Durchfahren des Arbeitsbereichs zulassen.

Die Testfunktionen liefern einen Überblick über den aktuellen Stellventilzustand, eventuell vorhandene Fehlfunktionen und unterstützen die Fehlersuche sowie die vorausschauende Planung von Wartungsarbeiten.

Während der Testdurchführungen werden kurzzeitig die nachfolgend aufgeführten Parameter verändert:

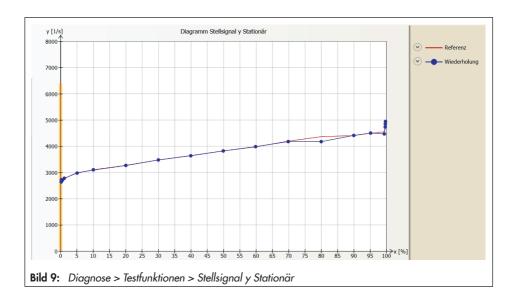
- Hub-/Drehwinkelbereich Anfang (Code 8): 0 %
- Hub-/Drehwinkelbereich Ende (Code 9): 100 %
- Aktivierung Hub-/Drehwinkelbegrenzung unten (Code 10): Aus
- Aktivierung Hub-/Drehwinkelbegrenzung oben (Code 11): Aus
- Aktivierung Endlage bei w kleiner (Code 14): Aus
- Aktivierung Endlage bei w größer (Code 15): Aus
- Kennlinienauswahl (Code 20): Linear
- Gewünschte Laufzeit auf (Code 21): Variabel
- Gewünschte Laufzeit zu (Code 22): Variabel

5.1 Stellsignal y Stationär

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	•	•

Die Testfunktion 'Stellsignal y Stationär' ermöglicht die genauere Prüfung der Ergebnisse aus der Beobachterfunktion 'Diagramm Stellsignal y Stationär' (vgl. Kapitel 4.6). Neben Fehlzuständen beim Zuluftdruck, in der Pneumatik kann auch ein Fehlzustand bei den Antriebsfedern erkannt werden.

Der Test wird im Handbetrieb gestartet.


Während des Tests fährt das Ventil verschiedene, über den Stellbereich verteilte, fest vorgegebene Ventilstellungen an. Zu jeder Ven-

tilstellung x wird das Stellsignal y ermittelt und mit der Referenzkurve verglichen.

Die aufgenommenen Werte sind in einem Diagramm Stellsignal y gegen Ventilstellung x dargestellt (Kurve "Wiederholung").

Voraussetzungen

- Am eingesetzten Stellventil ist ein einfachwirkender Antrieb angebaut.
- Am eingesetzten Stellventil ist kein Booster angebaut.
- Es wurde ein Referenzlauf durchgeführt, vgl. Kapitel 2.4.1.
 Ist bei Teststart keine Referenzkurve im Stellungsregler vorhanden, werden die Daten des ersten Testlaufs als Referenz verwendet.

Testfunktionen

Einstellungen > Identifikation > Stellungsregler > Antrieb

- 1. Bauart: Einfachwirkend, [-/-]
- 2. Booster: Nicht vorhanden, [-/-]

Parametrierung

- 1. In die Betriebsart 'Hand' wechseln.
- 2. Statusmeldungen klassifizieren.
- Test starten.

Die Anzeige 'Testinformation' meldet "Testdurchführung". Der Stellungsregler zeigt im Wechsel "d1" und "tESt" an. Der Sammelstatus \vec{\psi} 'Funktionskontrolle' wird gesetzt.

Betrieb > Betriebsart 1)

1. Gewünschte Betriebsart (Code 0): Hand

Typ 3730-2/-3/-4/-5 (1.5x) und 3731-3:

Einstellungen > Stellungsregler > Fehlerüberwachung > Statusklassifikation > Erweitert >

- 2. Zuluftdruck
 - Eventuell verändert (TEST):
 - $[\otimes]$, \Leftrightarrow , \otimes , $(\overline{\Psi})$, $(\underline{\wedge})$
 - Eventuell nicht ausreichend (TEST):
 [⊗], ⋄, ⊗, (♥), (♠)
 - Stark ausgelastet (TEST): [⊗], ♠, ⊗, (♥), (♠)

Leckage Pneumatik

- Eventuell vorhanden (TEST):
- $[\otimes]$, \Leftrightarrow , \otimes , $(\overline{\Psi})$, $(\underline{\wedge})$
- Eventuell zu groß (TEST): $[\bigcirc]$, \Leftrightarrow , \bigcirc , $(\overline{\Psi})$, $(\stackrel{\wedge}{\wedge})$

Antriebsfedern

Eventuell Federsteifigkeit reduziert (Federausfall) (TEST): [⊗], ⋄, ∞, (♥), (∧)

- Eventuell Vorspannung reduziert (TEST): [∅], ♠, ⋈, (♥), (♠)
- Stark ausgelastet (TEST): [○], ♠, ⋈, (♥), (♠)

Typ 3730-5 (1.6x) und 3731-5:

Einstellungen > Stellungsregler > Diagnosekonfiguration > Klassifikation

- 2. Zuluftdruck: [⊗], ♦, 🔘, 🔻, 🔨
 - Leckage Pneumatik: [⊗], �, ❷, ₩, 🛧
 - Antriebsfedern: [⊗], ♦, ⊗, ♥, ∱
- 3. Start Testlauf
- Typ 3730-4/-5, 3731-5: Betrieb > Betriebsart > Stellungsregler (AO, TRD)

i Info

Über den Befehl 'Stopp Testlauf' oder durch Drücken des Dreh-/Druckknopfs wird der Test abgebrochen.

Nach Abbruch des Tests verbleibt der Stellungsregler im Handbetrieb.

In TROVIS-VIEW werden Testinformationen und Fortschritt des Tests angezeigt. Nach Beendigung des Tests meldet die Anzeige 'Testinformation' "Test beendet".

i Info

Jede weitere Testdurchführung überschreibt die alten Messwerte (Kurve "Wiederholung").

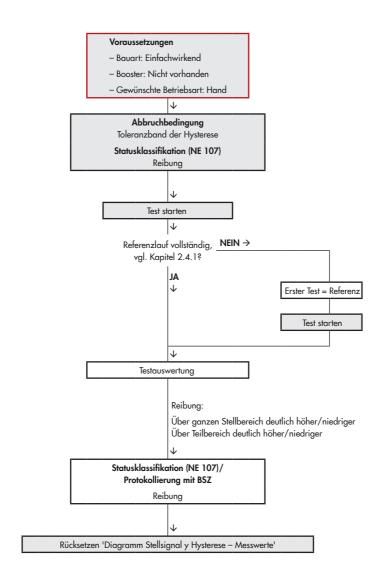
5.1.1 Auswertung und Überwachung

Aus einem Vergleich der während des Tests gemessenen Abhängigkeit des *Stellsignals y* zur *Ventilstellung x* mit der Referenzkurve lassen sich folgende Effekte ablesen:

- Das Stellsignal y verschiebt sich gegenüber der Referenzkurve bei gleichzeitig ansteigender Steigung nach unten.
- Das Stellsignal y verschiebt sich ab einer bestimmten Ventilöffnung kontinuierlich gegenüber der Referenzkurve nach oben, wenn eine signifikante Leckage im pneumatischen System infolge undichter Verschraubungen oder eines Membranrisses auftritt. Der Stellungsregler generiert die Meldung 'Leckage Pneumatik' entsprechend der eingestellten Statusklassifikation.
- Das Stellsignal y folgt zunächst der Referenzkurve und steigt dann nahezu stetig
 an. Dieses Verhalten weist darauf hin,
 dass der Zuluftdruck nicht ausreicht, um
 den gesamten Ventilstellbereich zu
 durchfahren. Der Stellungsregler generiert die Meldung 'Zuluftdruck' entsprechend der eingestellten Statusklassifikation.
- Das Stellsignal y verschiebt sich bei gleichzeitig geringerer Steigung gegenüber der Referenzkurve nach unten, wenn bei einem Stellventil mit Sicherheitsstellung "Feder schließt" die Federkraft reduziert ist. Der Stellungsregler generiert die Meldung 'Antriebsfedern' ent-

sprechend der eingestellten Statusklassifikation.

Diagnose > Statusmeldungen > Erweitert


- Zuluftdruck
- Leckage Pneumatik
- Antriebsfedern

5.1.2 Einzelnes Rücksetzen

Die Diagnoseparameter und Messdatenauswertung der Testfunktion 'Stellsignal y Stationär' werden über den Befehl 'Rücksetzen Diagramm Stellsignal y Stationär – Messwerte' zurückgesetzt.

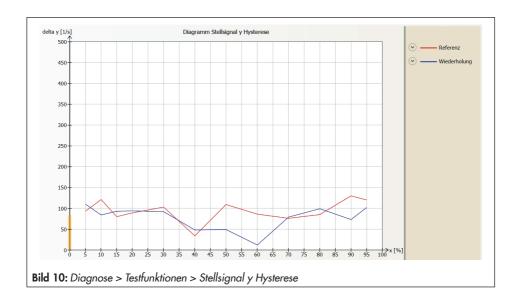
Betrieb > Rücksetzen

 Rücksetzen 'Diagramm Stellsignal y Stationär – Messwerte'

5.2 Stellsignal y Hysterese

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	•	•

Die Testfunktion ermöglicht die genauere Prüfung der Ergebnisse aus der Beobachterfunktion 'Diagramm Stellsignal y Hysterese' (Kapitel 4.7). Es können Reibungsänderungen erkannt werden.


Der Test wird im Handbetrieb gestartet.

Während des Tests fährt das Ventil verschiedene, über den Stellbereich verteilte, fest vorgegebene Ventilstellungen an. Bei jeder angefahrenen Ventilstellung wird eine rampenartige Hubänderung kleiner ein Prozent durchgeführt und die Stellsignaländerung Δy ermittelt und mit den aufgenommenen Refe-

renzwerten verglichen. Die aufgenommenen Messwerte sind in einem Diagramm Stellsignaländerung Δy gegen Ventilstellung x dargestellt.

Voraussetzungen

- Am eingesetzten Stellventil ist ein einfachwirkender Antrieb angebaut.
- Am eingesetzten Stellventil ist kein Booster angebaut.
- Es wurde eine Referenzkurve aufgenommen, vgl. Kapitel 2.4.1.
 Ist bei Teststart keine Referenzkurve im Stellungsregler vorhanden, werden die Daten des ersten Testlaufs als Referenz verwendet.

Testfunktionen

Einstellungen > Identifikation > Stellungsregler > Antrieb

- 1. Bauart: Einfachwirkend, [-/-]
- 2. Booster: Nicht vorhanden, [-/-]

Parametrierung

- 1. In die Betriebsart 'Hand' wechseln.
- 2. Statusmeldungen klassifizieren.
- 3. Abbruchbedingung einstellen, vgl. Kapitel 5 2 1
- 4. Test starten.

Die Anzeige 'Testinformation' meldet "Testdurchführung". Der Stellungsregler zeigt im Wechsel "d2" und "tESt" an. Der Sammelstatus 👿 'Funktionskontrolle' wird gesetzt.

Betrieb > Betriebsart 1)

1. - Gewünschte Betriebsart (Code 0): Hand

Typ 3730-2/-3/-4/-5 (1.5x) und 3731-3:

Einstellungen > Stellungsregler > Fehlerüberwachung > Statusklassifikation > Erweitert >

- 2. Reibung
 - über ganzen Stellbereich deutlich höher/ niedriger (TEST) ²): [⊗], ⋄, ⊗, (♥), (♠)
 - über Teilbereich deutlich höher/niedriger (TEST) ²: [⊗], ⋄, ⊗, (♥), (♠)

Typ 3730-5 (1.6x) und 3731-5:

Einstellungen > Stellungsregler > Diagnosekonfiguration > Klassifikation

2. – Reibung: [⊗], �, Ø, ▼, ⚠

Diagnose > Beobachterfunktionen > Diagramm Stellsignal y > Hysterese

3. – Toleranzband der Hysterese: 1.0 bis [5.0 %]

Diagnose > Testfunktionen > Stellsignal y Hysterese

- 4. Start Testlauf
- Typ 3730-4/-5, 3731-5: Betrieb > Betriebsart > Stellungsregler (AO, TRD)
- 2) Typ 3730-4/-5 (1.5x): jeweils zwei einzelne Parameter: '... höher (TEST)' und '... niedriger (TEST)'

i Info

Über den Befehl 'Stopp Testlauf' oder durch Drücken des Dreh-/Druckknopfs wird der Test abgebrochen.

Nach Abbruch des Tests verbleibt der Stellungsregler im Handbetrieb.

In TROVIS-VIEW werden Testinformationen und Fortschritt des Tests angezeigt. Nach Beendigung des Tests meldet die Anzeige 'Testinformation' "Test beendet".

5.2.1 Auswertung und Überwachung

Der Test wird abgebrochen, wenn eine Ventilstellung nicht angefahren werden kann oder wenn das 'Toleranzband der Hysterese' verlassen wird.

- Verlässt die Ventilstellung x während der Testphase das 'Toleranzband der Hysterese', wird der Test sofort abgebrochen und der Stellungsregler geht in den Regelbetrieb über.
- Tritt eine Sollwertänderung Δw auf, die größer als das 'Toleranzband der Hysterese' ist, wird der Test abgebrochen und

- nach einer Wartezeit von 30 Sekunden bei dem neuen Arbeitspunkt aktiviert.
- Sollte auch dieser Testlauf durch eine Sollwertänderung Δw abgebrochen werden, so wird er bei dem sich einstellenden Arbeitspunkt nach einer Wartezeit von 60 Sekunden erneut aktiviert.
- Dies ist insgesamt zehnmal möglich, wobei sich die Wartezeit immer um jeweils 30 Sekunden erhöht (Anzahl der Wiederholungen x 30 s). Nach dem zehnten Testabbruch wird dann wieder der definierte Parameter 'Zeitlicher Mindestabstand' eingehalten.

Weist die Auswertung der Hysterese auf einen Fehler "Reibung" hin, generiert der Stellungsregler eine entsprechende Meldung.

Diagnose - Statusmeldung > Erweitert

Reibung

5.2.2 Einzelnes Rücksetzen

Die Diagnoseparameter und Messdatenauswertung der Testfunktion 'Stellsignal y Hysterese' werden über den Befehl 'Rücksetzen Diagramm Stellsignal y Hysterese – Messwerte' zurückgesetzt.

Betrieb > Rücksetzen

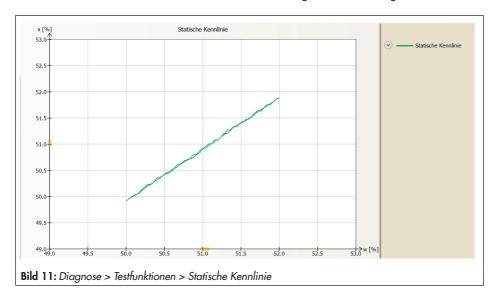
 Rücksetzen 'Diagramm Stellsignal y Hysterese – Messwerte'

5.3 Statische Kennlinie

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	•	•

Das statische Stellverhalten des Stellgeräts wird beeinflusst von der Reibungshysterese und den elastischen Vorgängen in der Packung für die Ventilstangenabdichtung.

Der Test wird im Handbetrieb gestartet.


Der Stellungsregler gibt in einem definierten Testbereich ('Start' und 'Ende') den *Sollwert* w in kleinen Sprüngen vor und zeichnet jeweils die Antwort der *Ventilstellung* x nach der vorgegebenen 'Wartezeit nach Sprung' auf. Die Sprunghöhe ermittelt der Stellungsregler aus dem definierten Testbereich und der Anzahl der Messwerte ('Anzahl bis Umkehr'). Innerhalb des Testbereichs wird der

aufsteigende und abfallende Ast aufgezeichnet. Die Antwort der *Ventilstellung x* auf die *Sollwertänderung \Delta w* wird als Diagramm dargestellt.

Die Tote Zone wird bei einer Sprunghöhe kleiner 0,2 % im Stellungsregler ermittelt und ausgewertet:

- 'Minimale Tote Zone': Minimale Sollwertänderung, die einen minimalen Hub herbeiführt
- 'Durchschnittliche Tote Zone': Mittlere Sollwertänderung, die einen minimalen Hub herbeiführt
- 'Maximale Tote Zone': Maximale Sollwertänderung, die einen minimalen Hub herbeiführt

Als "Tote Zone" wird die Betragsdifferenz des Sollwerts w bezeichnet, die eine minimale Änderung der Ventilstellung x herbeiführt.

Parametrierung

- 1. In die Betriebsart 'Hand' wechseln.
- 2. Test parametrieren.
- 3. Test starten.

Die Anzeige 'Testinformation' meldet "Test aktiv". Der Stellungsregler zeigt im Wechsel "d3" und "tESt" an. Der Sammelstatus VFunktionskontrolle' wird gesetzt.

Betrieb > Betriebsart 1)

1. - Gewünschte Betriebsart (Code 0): Hand

Diagnose > Testfunktionen > Statische Kennlinie

- 2. Start: 0.0 bis 100.0 %, [50.0 %]
 - Ende: 0.0 bis 100.0 % [52.0 %]
 - Wartezeit nach Sprung:0.1 bis 25.0 s, [1.0 s]
 - Anzahl bis Umkehr: 1 bis 50, [50]
- 3. Start Testlauf
- Typ 3730-4/-5, 3731-5: Betrieb > Betriebsart > Stellungsregler (AO, TRD)

i Info

Über den Befehl 'Abbruch Testlauf' oder durch Drücken des Dreh-/Druckknopfs wird der Test abgebrochen.

Nach Abbruch des Tests verbleibt der Stellungsregler im Handbetrieb.

In TROVIS-VIEW werden Testinformationen und Fortschritt des Tests angezeigt. Nach Beendigung des Tests meldet die Anzeige 'Testinformation' "Test nicht aktiv".

5.3.1 Einzelnes Rücksetzen

Ein einzelnes Rücksetzen der Diagnoseparameter und Messwerte ist nicht möglich.

* ACHTUNG! Bei zeitgesteuerter Testdurchführung ist der Stellungsregler schreibgeschützt (Vor-Ort und Software)

Betriebsart AUTO SAFE MAN w < 'Grenze 25 % w > 'Grenze Sicherheits-< w > Sicherheitsstellung' 50 % stellung' Testmodus PST Testmodus PST \downarrow ψ **PST** PST **PST PST** PST **PST** Auto Man Auto Man Man Auto __ x [%] PST nicht PST nicht möglich möglich

Startbedingungen PST bei Anwendungsart = "Auf/Zu-Ventil"

1, 2, 3)

Arbeitspunkt/Ventilposition gemäß Sollwert

PST möglich

1, 2, 3, 4)

 \downarrow

 ψ

1, 3)

EB 8389 73

 \downarrow

 \downarrow

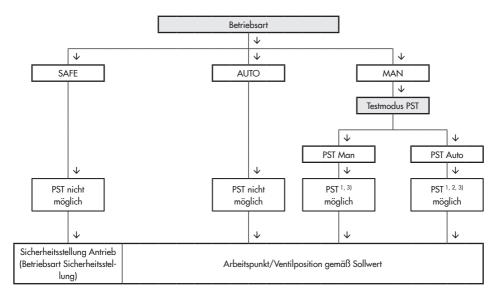
1, 3, 4)

PST nicht möglich

Sicherheitsstellung Antrieb (Betriebsart Sicherheitsstel-

lung)

¹⁾ PST-Start einmalig


²⁾ PST-Start einmalig mit 'Autotestzeit'

³⁾ PST-Start über Binäreingang

⁴⁾ PST-Start einmalig über Sollwert w, vgl. Kapitel 4.1

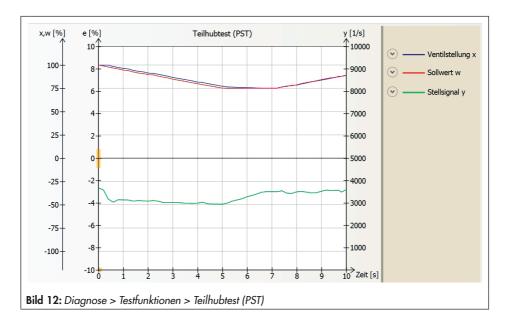
Testfunktionen - Teilhubtest (PST)

Startbedingungen PST bei Anwendungsart = "Regelventil"

- 1) PST-Start einmalig
- 2) PST-Start einmalig mit 'Autotestzeit'
- 3) PST-Start über Binäreingang
- 4) PST-Start einmalig über *Sollwert w*, vgl. Kapitel 4.1

5.4 Teilhubtest (PST)

Der Teilhubtest (PST) ist besonders für die zustandsorientierte Erkennung von Fehlzuständen pneumatischer Absperrarmaturen geeignet. So können die Versagenswahrscheinlichkeit im Notfall gesenkt und erforderliche Wartungsintervalle eventuell verlängert werden.


Ein Festsetzen (Festfressen) einer im Normalfall in der Endlage befindlichen Absperrarmatur kann so verhindert werden. Am Anfang der Bewegung aus der Endlage muss das Losbrechmoment überwunden werden. Das Losbrechmoment ist abhängig von der Abdichtung, von Ablagerungen, vom Medium und von der Reibung in der Ventilgarnitur. Wird das Losbrechmoment überwunden,

kann davon ausgegangen werden, dass das Ventil auch vollständig schließt.

Die Aufnahme des Testverlaufs ermöglicht zusätzlich eine Bewertung des dynamischen Stellverhaltens

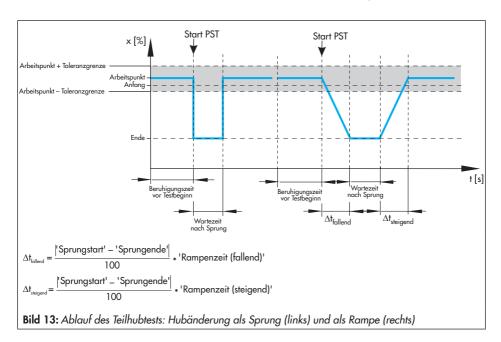
Der Teilhubtest kann einmalig (sofortige Testdurchführung) oder bei einem Auf/Zu-Ventil im Automatikbetrieb turnusmäßig nach Ablauf des eingestellten Testintervalls (zeitgesteuerte Testdurchführung) erfolgen, wenn die Startbedingungen für den Start des Teilhubtests erfüllt sind (vgl. Seite 73 und Seite 74):

- Ein Regelventil befindet sich im Handbetrieb.
- Ein Auf/Zu-Ventil befindet sich im Handoder Automatikbetrieb. Im Automatikbetrieb erfolgt der Start nur, wenn der Soll-

Testfunktionen

wert w größer als die 'Grenze Sicherheitsstellung' (Code 49 - h2) ist.

Für die Dauer des Teilhubtests werden nachfolgend aufgeführte Parameter gesetzt:


- Kennlinienauswahl (Code 20): Linear
- Gewünschte Laufzeit auf (Code 21): Variabel
- Gewünschte Laufzeit zu (Code 22): Variabel

Beim Teilhubtest wird das Ventil von einem vorgegebenen Startwert bis zu einem definierten Endwert verfahren und kehrt wieder in die Ausgangsposition zurück.

Die Hubänderung kann als Rampe oder als Sprung ausgeführt werden (Bild 13). Wird der Test als Rampe ausgeführt, sind zusätzlich die Rampenzeiten für steigend und fallend zu definieren.

Damit der Teilhubtest durchgeführt wird, muss der Diagnoseparameter 'Sprungstart' im Bereich des aktuellen Arbeitspunkts ± 'Sprungtoleranzgrenze' liegen.

Der Test beginnt nach Ablauf der 'Beruhigungszeit vor Testbeginn'. Ausgehend vom
'Sprungstart' fährt das Ventil bis zum
'Sprungende'. In dieser Position verharrt das
Ventil für die im Diagnoseparameter 'Wartezeit nach Sprung' vorgegebene Zeit, bevor
es sich in einem zweiten Sprung in entgegengesetzter Richtung vom 'Sprungende' hin
zum 'Sprungstart' bewegt. Nach Ablauf der
'Wartezeit nach Sprung' fährt das Ventil
wieder in den Arbeitspunkt.

Die 'Abtastzeit' legt das Zeitintervall fest, mit dem die Messwerte während des Tests aufgenommen werden.

Testabbruchbedingungen

Verschiedene Testabbruchbedingungen bieten zusätzlichen Schutz gegen ungewolltes "Losreißen" und Überschreiten des Endwerts. Der Stellungsregler bricht den Teilhubtest ab, wenn eine der folgenden Abbruchbedingungen erfüllt ist:

- 'Maximale Testdauer Anwendervorgabe': Der Test wird abgebrochen, wenn die maximale Testdauer erreicht ist.
- 'Maximale Losbrechzeit' (nur Typ 3730-4/-5): Der Test wird abgebrochen, wenn die Ventilstellung nach Ablauf der vorgegebenen Zeit weniger als 10 % des eingestellten PST-Zielhubs erreicht hat. Diese Abbruchbedingung wird nur wirksam, wenn sie aktiviert ist ('Aktivierung Maximale Losbrechzeit' = "Ja").

Abbruchbedingung Ventilstellung x zur Kontrolle der Ventilstellung

'x-Überwachungswert': Der Test wird abgebrochen, sobald die Ventilstellung den eingestellten Wert unterschreitet.
 Diese Abbruchbedingung wird nur wirksam, wenn sie aktiviert ist ('Aktivierung x-Überwachung' = "Ja").

Abbruchbedingung Stellsignal y zur Reibungsüberwachung des Stellglieds. Durch erhöhte Reibung des Stellglieds und ein damit verbundenes erhöhtes Losbrechmoment resultiert ein erhöhtes Stellsignal des Stellungsreglers. In der Folge kann es zu einem Überschwingen der Ventilstellung kommen.

Um dies zu vermeiden, kann das Stellsignal y überwacht und der Test im Fehlerfall abgebrochen werden.

'delta-y-Überwachungswert': Der 'delta-y-Überwachungswert' ist ein Sicherheitszuschlag, der auf den bei der Referenzmessung ermittelten 'delta-y-Überwachung Referenzwert' addiert wird, so dass sich ein zulässiger Bereich für das Stellsignal y ergibt. Sobald das Stellsignal y diesen Bereich verlässt, wird der Test abgebrochen.

Der 'delta-y-Überwachungswert' wird in Prozent vorgegeben und bezieht sich auf den kompletten Stellsignalbereich (10000 1/s).

Diese Abbruchbedingung wird nur wirksam, wenn sie aktiviert ist ('Aktivierung delta-y-Überwachung' = "Ja").

Die Abbruchbedingung *Stellsignal y* ist nicht geeignet, wenn prozessbedingt die volle Stellkraft des Antriebs zum Verfahren des Ventils benötigt wird.

i Info

- Bei Stellventilen mit doppeltwirkendem Antrieb und Umkehrverstärker sowie bei Stellventilen, die durch einen Ersatzabgleich (SUB) in Betrieb genommen wurden, ist der Teilhubtest mit deaktivierten Testabbruchbedingungen durchzuführen.
- Bei Stellventilen mit Booster können höhere Überschwinger auftreten. Dementsprechend müssen die Testabbruchbedingungen angepasst werden.

Testfunktionen

Zusätzlich wird der Teilhubtest bei einem der nachfolgend aufgelisteten Ereignisse abgebrochen:

- Int. Magnetventil/Zwangsentlüftung Abbruch': Das interne Magnetventil hat ausgelöst/die Zwangsentlüftung wurde aktiviert.
- 'Zuluftdruck/Reibung': Während des Tests tritt ein zu geringer Zuluftdruck oder eine zu hohe Reibung auf.
- 'Differenz w Sprungstart zu hoch': Der 'Sprungstart' liegt außerhalb des Bereichs Arbeitspunkt ± 'Sprungtoleranzgrenze'
- Führungsgröße wurde verändert': Der Test wurde zeitgesteuert gestartet. Durch eine Sollwertänderung vor dem Sprung liegt der 'Sprungstart' außerhalb des Bereichs Arbeitspunkt ± 'Sprungtoleranzgrenze'.
- 'Strom zu niedrig' (nicht Typ 3730-4/-5)

i Info

Meldet die Anzeige 'Messdatenspeicher voll' "Ausfall", dann wurde die 'Abtastzeit' zu niedrig gewählt. Nach 100 Messwerten je Messgröße stoppt die Aufzeichnung, der Test wird jedoch bis zum Ende fortgesetzt.

Nach Abbruch des Teilhubtests meldet die Anzeige 'Status Teilhubtest (PST)' "Nicht erfolgreich". Im Verzeichnis **Messdatenauswertung > Aktueller Test** ist die Abbruchursache durch die Meldung "Ausfall" gekennzeichnet

Parametrierung

- Teilhubtest parametrieren, vgl. auch "Hinweise zum Einstellen der PST-Diagnoseparameter", Seite 79.
- 2. Abbruchbedingungen parametrieren.
- 3. Statusmeldung klassifizieren.

Diagnose > Testfunktionen > Teilhubtest

- 1. Sprungstart (Code 49 d2): 0.0 bis 100.0 %, [95.0 %]/[100.0 %]¹⁾
 - Sprungende (Code 49 d3): 0.0 bis 100.0 % [90.0 %]/[95.0 %]¹⁾
 - Sprungtoleranzgrenze: 0.1 bis 10.0 %, [2.0 %]
 - Aktivierung Rampenfunktion (Code 49 - d4): [Nein]/[Ja] ¹⁾
 - Beruhigungszeit vor Testbeginn (Code 49 d7): 1 bis 240 s, [10 s]/[2 s]/[1 s] 1)
 - Wartezeit nach Sprung (Code 49 d8): 1.0/2.0 bis 240.0 s, [2.0 s] ²⁾
 - Abtastzeit (Code 49 d9): 0.2 bis 250.0 s, [0.2 s]/[0.8 s]
 - Anzahl der Sprünge: 1, [2]

Nur bei aktivierter Rampenfunktion:

- Rampenzeit (fallend) (Code 49 d5): 0 bis 9999 s, [15 s]/[45 s]/[600 s]
- Rampenzeit (steigend) (Code 49 d6): 0 bis 9999 s, [15 s]/[45 s]/[60 s]
- Maximale Testdauer Anwendervorgabe (Code 49 - E7): 30 bis 25000 s, [30 s]/ [90 s]

- Aktivierung 'Max. Losbrechzeit' 6): Nein/[Ja]
- Max. Losbrechzeit ³⁾: 0.0 bis 25000.0 s, [7.5 s]
- Aktivierung x-Überwachung (Code 49 E0): [Nein]/[Ja]
- x-Überwachungswert (Code 49 E1): -10.0 bis 110.0 %, [0.0 %]/[85.0 %]
- Aktivierung delta-y-Überwachung (Code 49 - A8): [Nein]/[Ja]
- delta-y-Überwachungswert (Code 49 A9):0 bis 100 %, [0 %]/[10 %]
- Aktivierung PST-Toleranzband-Überwachung (Code 49 - E5): Ja, [Nein]
- PST-Toleranzband (Code 49 E6):0.1 bis 100.0 %, [5.0 %]

Typ 3730-2/-3/-4/-5 (1.5x) und 3731-3:

Einstellungen > Stellungsregler > Fehlerüberwachung > Statusklassifikation > Erweitert > Teilhubtest (PST)/Vollhubtest (FST)

3. – PST/FST-Status gesetzt: ⊗, [�], ⊗, (♥), (♠)

Typ 3730-5 (1.6x) und 3731-5:

Einstellungen > Stellungsregler > Diagnosekonfiguration > Klassifikation

3. – Teilhubtest (PST)/Vollhubtest (FST): [⊗], ♦, ♥, ▼, ∱

Diagnose > Testfunktionen > Teilhubtest

- 4. Entweder:
 - Gewünschter Testmodus (Code 49 A2):
 [PST Man]
 - Start Testlauf

Oder: (bei einem Regelventil nur im Handbetrieb (Betriebsart MAN), bei einem Auf/Zu-Ventil nur im Automatikbetrieb (Betriebsart AUTO))

- Gewünschter Testmodus (Code 49 A2) =PST Auto, [PST Man]
- Autotestzeit (Code 49 A3):[1 h] bis 2345 d

ACHTUNG! Bei zeitgesteuerter Testdurchführung ist der Stellungsregler schreibgeschützt (Vor-Ort-Bedienung und über Bediensoftware).

Anzeige Code 0: "OC" und "PST" im Wechsel Anzeige Code 3: "PST" blinkt

- 1) Werkseinstellung je nach Ausführung
- 2) Einstellbereich je nach Ausführung
- 3) Nur Typ 3730-4/-5 (1.5x)

i Info

Über den Befehl 'Stopp Testlauf' oder durch Drücken des Dreh-/Druckknopfs wird der Test abgebrochen. Nach Abbruch des Tests verbleibt der Stellungsregler in der gewählten Betriebsart. Die Anzeige 'Status Teilhubtest (PST)' meldet "Test nicht erfolgreich".

In TROVIS-VIEW werden Testinformationen und Fortschritt des Tests angezeigt. Nach Beendigung des Tests meldet die Anzeige 'Testinformation' "Test nicht aktiv".

Hinweise zum Einstellen der PST-Diagnoseparameter

 SAMSON empfiehlt, den Teilhubtest nur aus den Endlagen heraus zu starten. Bei Auf/Zu-Ventilen sollte der Startwert dem Arbeitspunkt entsprechen.

Testfunktionen

- Die 'Rampenzeit (steigend)' muss größer sein als der entsprechende bei Initialisierung ermittelte Wert für die 'Minimale Laufzeit zu' (Code 41).
- Die 'Rampenzeit (fallend)' muss größer sein als der entsprechende bei Initialisierung ermittelte Wert für die 'Minimale Laufzeit auf' (Code 40).

Kundige Nutzer der Ventildiagnose können sinnvolle Rampenzeiten über einen Vollhubtest (FST) ermitteln, vgl. Kapitel 9.4.

 Die 'Abtastzeit' sollte die angezeigte 'Empfohlene Mindest-Abtastzeit' nicht unterschreiten. Die 'Empfohlene Mindest-Abtastzeit' ergibt sich aus der 'Vorgussichtlichen Testdauer'

5.4.1 Start durch Auf/Zu-Ventil

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•			•

Bei Auf/Zu-Ventilen wird der Teilhubtest ausgelöst, wenn sich der *Sollwert w* vom Arbeitspunkt aus in den Bereich zwischen 25 und 50 % Hub bewegt und hier über sechs Sekunden verbleibt, vgl. Kapitel 4.1 und Abbildung Seite 73.

Damit der Teilhubtest durchgeführt wird, muss der 'Sprungstart' im Bereich der definierten Stellung ± 'Sprungtoleranzgrenze' liegen. Testdurchführung und -abbruch erfolgt nach Kapitel 5.4, die Auswertung nach Kapitel 5.4.3.

5.4.2 Start durch Binäreingang

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•			•

Wenn der Stellungsregler mit der Option Binäreingang ausgestattet ist, kann der Teilhubtest durch den Binäreingang ausgelöst werden, wenn die Startbedingungen für den Start des Teilhubtests erfüllt sind:

- Ein Regelventil befindet sich im Handbetrieb
- Ein Auf/Zu-Ventil befindet sich im Handoder Automatikbetrieb. Im Automatikbetrieb erfolgt der Start nur, wenn der 'Sicherheitssollwert' größer als die 'Grenze Sicherheitsstellung' (Code 49 h2) ist. Im Handbetrieb nur, wenn der 'Gewünschte Testmodus' = "PST Man" eingestellt ist.

Testdurchführung und -abbruch erfolgt nach Kapitel 5.4, die Auswertung nach Kapitel 5.4.3

Es ist darauf zu achten, dass der Diagnoseparameter 'Sprungstart' des Teilhubtests im Bereich 'Sicherheitssollwert' ± 'Sprungtoleranzgrenze' liegt.

Typ 3730-2/-3 und 3731-3:

Einstellungen > Stellungsregler > Optionen

 Aktion bei aktivem Binäreingang: Start Teilhubtest (PST)

- Flankensteuerung Binäreingang:
 [Ein: Schalter offen/Aus: Schalter geschlossen],
 Ein: Schalter geschlossen/Aus: Schalter offen
- Sicherheitssollwert: 0.0 bis 100.0 %, [50.0 %]
- Konfiguration Binäreingang: [Aktiv], Passiv

i Info

Weitere Einzelheiten zur Option 'Binäreingang' enthält Kapitel 8.

5.4.3 Auswertung und Überwachung

Die Auswertungen der letzten drei Teilhubtests werden im Verzeichnis **Messdatenauswertung** mit Zeitstempel abgelegt. Der letzte durchgeführte Teilhubtest wird grafisch im Ordner **Teilhubtest** dargestellt.

Test erfolgreich

Bei einem vollständig durchgeführten Teilhubtest werden die ausgewerteten Parameter separat für die steigende und die fallende Kennlinie angezeigt.

Messdatenauswertung bei Hubänderung als Sprung:

- 'Überschwinger' (relativ zur Sprunghöhe)[%]
- 'Totzeit' [s]
- 'T63' [s]
- 'T98' [s]
- 'Anregelzeit' [s]
- 'Ausregelzeit' [s]

Messdatenauswertung bei Hubänderung als Rampe:

– 'Überschwinger' (relativ zur Sprunghöhe)[%]

Die Ergebnisse des ersten Teilhubtests werden als Referenzmessung verwendet.

i Info

Änderungen in den nachfolgend aufgelisteten Diagnoseparametern bewirken Änderungen im Testablauf. Die Ergebnisse des nächsten Teilhubtests werden als neue Referenzmessung verwendet:

- 'Sprungstart'
- 'Sprungende'
- 'Aktivierung Rampenfunktion'
- 'Rampenzeit (steigend)'
- 'Rampenzeit (fallend)'
- 'Wartezeit nach Sprung'

Test nicht erfolgreich

War der Test nicht erfolgreich, wird die Abbruchursache unter der entsprechenden Anzeige durch die Meldung "Ausfall" angezeigt. Der Stellungsregler generiert eine Meldung 'Teilhubtest (PST)/Vollhubtest (FST)' entsprechend der eingestellten Statusklassifikation. Unabhängig von der Statusklassifikation wird Code 79 'Erweiterte Diagnose' gesetzt.

Diagnose > Statusmeldungen > Erweitert

Teilhubtest (PST)/Vollhubtest (FST)

Testfunktionen

i Info

Solange kein Teilhubtest erfolgreich durchgeführt wurde, ist die Meldung 'Kein Test vorhanden' gesetzt.

5.4.4 Einzelnes Rücksetzen

Die Diagnoseparameter und Messdatenauswertung des Teilhubtests werden über den Befehl 'Rücksetzen Teilhubtest (PST)' zurückgesetzt.

Der Stellungsregler speichert jeweils die Messdatenauswertung der letzten drei Teilhubtests. Bei Durchführung eines weiteren Tests wird die Messdatenauswertung des vorletzten Tests gelöscht.

Betrieb > Rücksetzen

- Rücksetzen 'Teilhubtest (PST)'

5.4.5 Sprungantwort

Das dynamische Stellverhalten des Stellventils kann durch die Aufnahme von Sprungantworten untersucht werden.

Die Aufnahme der Sprungantwort erfolgt mit der Funktion 'Teilhubtest' bei sprunghafter Änderung der Ventilstellung.

Weiterhin werden folgende Einstellungen empfohlen:

- Alle Abbruchbedingungen des Teilhubtests sind, sofern es der Prozess zulässt, zu deaktivieren.
- Der Teilhubtest wird manuell gestartet (PST Man).

5.5 Vollhubtest (FST)

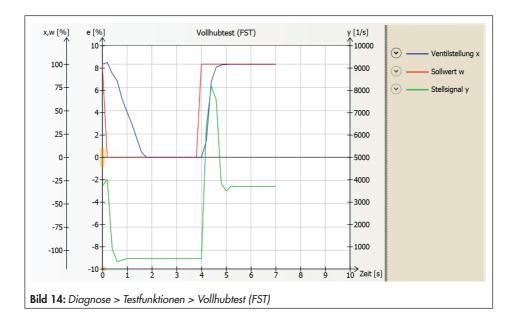
3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•	•	•	•	•

Die Aufnahme des Testverlaufs ermöglicht die Bewertung des dynamischen Stellverhaltens.

Der Vollhubtest wird im Handbetrieb gestartet

Für die Dauer des Vollhubtests werden nachfolgend aufgeführte Parameter gesetzt:

- Kennlinienauswahl (Code 20): Linear
- Gewünschte Laufzeit auf (Code 21): Variabel
- Gewünschte Laufzeit zu (Code 22): Variabel


Beim Vollhubtest wird das Ventil über den gesamten Stellbereich verfahren.

Der erste Sprung endet in der Sicherheitsstellung, so dass der zweite Sprung in der Sicherheitsstellung startet.

Die Hubänderung kann als Rampe oder als Sprung ausgeführt werden (Bild 15). Wird der Test als Rampe ausgeführt, sind zusätzlich die Zeiten für den steigenden und den fallenden Sprung zu definieren.

Der Test beginnt nach Ablauf der 'Beruhigungszeit vor Testbeginn'. Die Wartezeit stellt sicher, dass das Ventil die Startposition erreicht hat

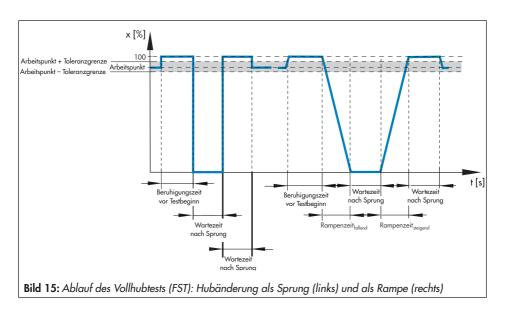
Ausgehend von der Startposition fährt das Ventil in die Sicherheitsstellung. In dieser Position verharrt das Ventil für die unter dem

Testfunktionen

Parameter 'Wartezeit nach Sprung' vorgegebene Zeit, bevor es sich in einem zweiten Sprung in entgegengesetzter Richtung von der Sicherheitsstellung in die Startposition des ersten Sprungs bewegt.

Nach Ablauf der 'Wartezeit nach Sprung' fährt das Ventil wieder in den Arbeitspunkt. Der Parameter 'Sprungtoleranzgrenze' definiert die zugelassenen Ventilstellungen für

den Sprungstart- und Sprungendwert.


Die 'Abtastzeit' legt das Zeitintervall fest, mit dem die Messwerte während des Tests aufgenommen werden.

Testabbruchbedingungen

Verschiedene Testabbruchbedingungen bieten zusätzlichen Schutz gegen ungewolltes "Losreißen" und Überschreiten des Endwerts. Der Stellungsregler bricht den Vollhubtest ab,

wenn die folgende Abbruchbedingung erfüllt ist:

- 'Maximale Testdauer Anwendervorgabe': Der Test wird abgebrochen, wenn die maximale Testdauer erreicht ist.
- 'Maximale Losbrechzeit' (nur Typ 3730-4/-5): Der Test wird abgebrochen, wenn das Ventil die Offenstellung nach Ablauf der vorgegebenen Zeit noch nicht verlassen hat.
 - Diese Abbruchbedingung wird nur wirksam, wenn sie aktiviert ist ('Aktivierung Maximale Losbrechzeit' = "Ja").
- 'Erlaubte Zeit bis Schließstellung' (nur Typ 3730-4/-5): Der Test wird abgebrochen, wenn das Ventil die Schließstellung nach Ablauf der vorgegebenen Zeit nicht erreicht hat.

Diese Abbruchbedingung wird nur wirksam, wenn sie aktiviert ist ('Aktivierung Erlaubte Zeit bis Schließstellung' = "Ja").

Zusätzlich wird der Vollhubtest bei einem der nachfolgend aufgelisteten Ereignisse abgebrochen:

- Int. Magnetventil/Zwangsentlüftung Abbruch': Das interne Magnetventil hat ausgelöst/die Zwangsentlüftung wurde aktiviert.
- 'Zuluftdruck/Reibung': Während des Tests tritt ein zu geringer Zuluftdruck oder eine zu hohe Reibung auf.
- Strom zu niedrig' (nicht Typ 3730-4/-5)

i Info

Meldet die Anzeige 'Messdatenspeicher voll' "Ausfall", dann wurde die 'Abtastzeit' zu niedrig gewählt. Nach 100 Messwerten je Messgröße stoppt die Aufzeichnung, der Test wird jedoch bis zum Ende fortgesetzt.

Nach Abbruch des Vollhubtests meldet die Anzeige 'Status Vollhubtest (FST)' "Nicht erfolgreich". Im Verzeichnis **Messdatenauswertung > Aktueller Test** ist die Abbruchursache durch die Meldung "Ausfall" gekennzeichnet.

Parametrierung

- 1. In den Handbetrieb wechseln.
- Vollhubtest (FST) parametrieren, vgl. auch "Hinweise zum Einstellen der FST-Diagnoseparameter", Seite 88.

- 3. Abbruchbedingung parametrieren.
- 4. Statusmeldung klassifizieren.

Betrieb > Betriebsart 1)

1. - Gewünschte Betriebsart (Code 0): Hand

Diagnose > Testfunktionen > Vollhubtest (FST)

- 2. Sprungtoleranzgrenze: 0.1 bis 10.0 %, [2.0 %]²⁾
 - Aktivierung Rampenfunktion: [Ja], Nein
 - Beruhigungszeit vor Testbeginn: 1 bis 240 s, [10 s]/[2 s]²⁾
 - Wartezeit nach Sprung: 2.0 bis 100.0 s, [2.0 s]²⁾
 - Abtastzeit: 0.2 bis 250.0 s, [0.2 s]/[1.4 s] ²⁾

Nur bei aktivierter Rampenfunktion:

- Rampenzeit (steigend): 0 bis 9999 s, [1 s]/[60 s]²⁾
- Rampenzeit (fallend): 0 bis 9999 s, [1 s]/[60 s]²⁾
- 3. Max. Testdauer Anwendervorgabe: 30 bis 25000 s, [30 s]/[150 s]²⁾
 - Aktivierung 'Maximale Losbrechzeit' ³⁾:
 [Ja], Nein
 - Maximale Losbrechzeit ³⁾:
 0.0 bis 25000.0 s, [7.5 s]
 - Aktivierung 'Erlaubte Zeit bis Schließstellung' ³⁾: [Ja], Nein
 - Erlaubte Zeit bis Schließstellung ³⁾: 0.0 bis 25000.0 s, [15.0 s]

Testfunktionen

Typ 3730-2/-3/-4/-5 (1.5x) und 3731-3:

Einstellungen > Stellungsregler > Fehlerüberwachung > Statusklassifikation > Erweitert > Teilhubtest (PST) / Vollhubtest (FST)

4. - PST/FST-Status gesetzt:

Typ 3730-5 (1.6x) und 3731-5:

Einstellungen > Stellungsregler > Diagnosekonfiguration > Klassifikation

4. – Teilhubtest (PST)/Vollhubtest (FST):
[⊗], �, ⊗, ▼, ∧

Diagnose > Testfunktionen > Vollhubtest (FST)

- 5. Start Testlauf
- Typ 3730-4/-5, 3731-5: Betrieb > Betriebsart > Stellungsregler (AO, TRD)
- 2) Werkseinstellung je nach Ausführung
- 3) Nicht Typ 3730-2/-3 und 3731-3/-5

i Info

Über den Befehl 'Stopp Testlauf' oder durch Drücken des Dreh-/Druckknopfs wird der Test abgebrochen. Nach Abbruch des Tests verbleibt der Stellungsregler im Handbetrieb.

Hinweise zum Einstellen der FST-Diagnoseparameter

- Die 'Rampenzeit (steigend)' muss größer sein als der entsprechende bei Initialisierung ermittelte Wert für die 'Minimale Laufzeit zu' (Code 41).
- Die 'Rampenzeit (fallend)' muss größer sein als der entsprechende bei Initialisierung ermittelte Wert für die 'Minimale Laufzeit auf' (Code 40).

 Die 'Abtastzeit' sollte die angezeigte 'Empfohlene Mindest-Abtastzeit' nicht unterschreiten. Die 'Empfohlene Mindest-Abtastzeit' ergibt sich aus der 'Voraussichtlichen Testdauer'.

5.6.1 Auswertung und Überwachung

Die Auswertungen der letzten drei Vollhubtests werden im Verzeichnis **Messdatenauswertung** mit Zeitstempel abgelegt.

Test erfolgreich

Bei einem vollständig durchgeführten Vollhubtest werden die ausgewerteten Parameter separat für die steigende und die fallende Kennlinie angezeigt.

Messdatenauswertung bei Hubänderung als Sprung:

- 'Überschwinger' (relativ zur Sprunghöhe) [%]
- 'Totzeit' [s]
- 'T63' [s]
- 'T98' [s]
- 'Anregelzeit' [s]
- 'Ausregelzeit' [s]

Messdatenauswertung bei Hubänderung als Rampe:

– 'Überschwinger' (relativ zur Sprunghöhe)[%]

Die Ergebnisse des ersten Vollhubtests werden als Referenzmessung verwendet.

i Info

Änderungen in den nachfolgend aufgelisteten Diagnoseparametern bewirken Änderungen im Testablauf. Die Ergebnisse des folgenden Vollhubtests werden als neue Referenzmessung verwendet:

- 'Aktivierung Rampenfunktion'
- 'Rampenzeit (steigend)'
- 'Rampenzeit (fallend)'
- 'Wartezeit nach Sprung'

Test nicht erfolgreich

War der Test nicht erfolgreich, wird die Abbruchursache unter der entsprechenden Anzeige durch die Meldung "Ausfall" angezeigt. Der Stellungsregler generiert eine Meldung 'Teilhubtest (PST)/Vollhubtest (FST)' entsprechend der eingestellten Statusklassifikation. Unabhängig von der Statusklassifikation wird Code 79 'Erweiterte Diagnose' gesetzt.

Diagnose > Statusmeldungen > Erweitert

Teilhubtest (PST)/Vollhubtest (FST)

i Info

Solange kein Vollhubtest erfolgreich durchgeführt wurde, ist die Meldung 'Kein Test vorhanden' gesetzt.

5.6.2 Einzelnes Rücksetzen

Die Diagnoseparameter des Vollhubtests werden über den Befehl 'Rücksetzen 'Vollhubtest (FST)'' zurückgesetzt. Die Messdatenauswertung und die Meldung 'Teilhubtest (PST)/Vollhubtest (FST)' kann nicht zurückgesetzt werden.

Der Stellungsregler speichert jeweils die Messdatenauswertung der letzten drei Vollhubtests. Bei Durchführung eines weiteren Tests wird die Messdatenauswertung des vorletzten Tests gelöscht.

Betrieb > Rücksetzen

Rücksetzen 'Vollhubtest (FST)'

6 Dynamische HART®-Variablen

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
	•	•			

Die HART®-Spezifikation definiert vier dynamische Variablen, bestehend aus einem Wert und einer Einheit. Diesen Variablen können individuell Geräteparameter zugeordnet werden. Das universelle HART®-Kommando 3 (Universal Command #3) liest die dynamischen Variablen aus dem Gerät. Damit können auch herstellerspezifische Parameter mit einem universellen Kommando übertragen werden.

Je nach Stellungsregler können die dynamischen HART®-Variablen über die DD oder über TROVIS-VIEW unter [Einstellungen > Betriebseinheit] nach Tabelle 4 zugeordnet werden.

Einstellungen > Betriebseinheit

- Zuordnung sekundäre Variable: Variablenauswahl gemäß Tabelle 4 [Ventilposition]
- Zuordnung tertiäre Variable: Variablenauswahl gemäß Tabelle 4 [Regeldifferenz e]
- Zuordnung quartäre Variable: Variablenauswahl gemäß Tabelle 4 [Absolutes Wegintegral]

Das Rücksetzen der HART®-Variablen ist nur für alle Variablen gleichzeitig möglich.

Betrieb > Rücksetzen

Rücksetzen 'HART-Parameter'

Tabelle 4: Zuordnung dynamische HART®-Variablen

Variable	Bedeutung	Einheit
Führungsgröße	Führungsgröße	%
Ventilsollwert	Ventilsollwert	%
Zielposition	Zielposition	%
Ventilposition	Istwert	%
Regeldifferenz e	Regeldifferenz e	%
Absolutes Wegintegral	Absolutes Wegintegral	_
Zustand Binäreingang	0 = Nicht aktiv 1 = Aktiv 255 = -/-	-
Status internes Magnetventil/ Zwangsentlüftung	0 = Nicht angesteuert 1 = Angesteuert 2 = Nicht eingebaut	-
Sammelstatus	0 = Keine Meldung 1 = Wartungsbedarf 2 = Wartungsanforderung 3 = Ausfall 4 = Außerhalb der Spezifikation 7 = Funktionskontrolle	-
Temperatur	Temperatur	°C
Pegelwert (Leckage)	Pegelwert (Leckage)	dB

INBETRIEBNAHME

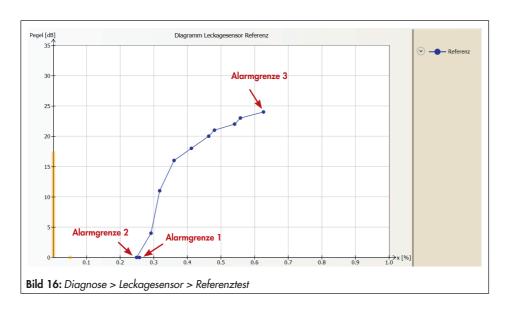
7 Leckagesensor

3730-2	3730-3	3731-3	3730-4	3730-5	3731-5
•	•			•	

Durch die Erweiterung des Stellungsreglers mit einem Leckagesensor ist es möglich, Leckagen in der Schließstellung festzustellen. Zu diesem Zweck ermittelt der Leckagesensor den Schallpegel im Dichtschließen und vergleicht den aktuellen Pegelwert mit vorgegebenen Alarmgrenzen. Der Stellungsregler generiert eine Meldung, wenn eine der Alarmgrenzen überschritten wird.

Voraussetzungen für die Nutzung des Leckagesensors:

 Am Ventil ist ein Leckagesensor angebaut, vgl. Standard-Anleitung des Stellungsreglers.


- Es wurde die Option 'Leckagesensor' eingestellt/erkannt.
- 3. Die Dichtschließfunktion ist aktiviert.
- 4. Der Leckagesensor wurde erfolgreich in Betrieb genommen, vgl. Kapitel 7.1.

Diagnose > Leckagesensor

2. - Identifikation Optionen: Leckagesensor

Einstellungen > Stellungsregler > Führungsgröße

- Aktivierung Endlage bei w kleiner (Code 14): [Ein]
 - Endlage bei w kleiner (Code 14):0.0 bis 49.9 %, [1.0 %]

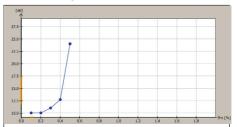
7.1 Inbetriebnahme des Leckagesensors

Um die Funktionalität des Leckagesensors nutzen zu können, muss zunächst das Ansprechverhalten des Leckagesensors auf normierte Standardbedingungen und auf die herrschenden Prozessbedingungen gemessen werden. Außerdem sind die Grenzwerte für die Alarmauslösung vorzugeben.

7.1.1 Referenztest

Der Referenztest (Bild 16) dient der Messung des Ansprechverhaltens des Leckagesensors. Es wird empfohlen, diesen Referenztest auszuführen. Auf Anforderung kann der Referenztest bei SAMSON erfolgen und muss dann nicht wiederholt werden. In diesem Fall sind die Standardbedingungen wie folgt:

- Medium = Luft
- Eingangsdruck = 4 bar
- Ausgangsdruck = Atmosphäre


Standardwerte der Alarmgrenzen bei Auslieferung sind A2 = 15 dB und A3 = 25 dB. Wurde der Leckagesensor nachträglich an das Stellventil installiert, dann müssen die Alarmgrenzen manuell konfiguriert oder mittels Referenz- und Wiederholungstest eingestellt werden, bevor der Leckagesensor genutzt werden kann, vgl. Kapitel 7 1 2

Für die Dauer des Referenztests werden nachfolgend aufgeführte Aktivierungen ausgeschaltet:

- Aktivierung Endlage bei w kleiner
- Aktivierung Rampenfunktion

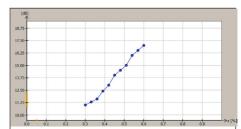
Phase 1: Das Ventil fährt nacheinander die elf benutzerdefinierten Stützstellen an. Nach Erreichen einer Stützstelle und Ablauf der 'Beruhigungszeit vor Pegelmessung' ermittelt der Leckagesensor den Pegel.

Ist die Pegeldifferenz zweier aufeinanderfolgender Stützstellen größer oder gleich dem eingestellten 'Ansprechpegel', werden die nachfolgenden Stützstellen nicht mehr angefahren, es folgt Phase 2.

Phase 1 erfolgreich: Zwischen den benutzerdefinierten Stützstellen 4 und 5 wird der eingestellte 'Ansprechpegel' von 10 dB überschritten. Es folgt Phase 2.

Wird der 'Ansprechpegel' nach Abfahren aller elf Stützstellen nicht erreicht, wird der Test abgebrochen. Der Abbruch wird mit Zeitstempel protokolliert. Die Anzeige 'Teststatus' meldet "Test fehlgeschlagen – Pegeländerung zu gering".

Phase 1 nicht erfolgreich: Die Pegeldifferenz zwischen zwei aufeinanderfolgenden Stützstellen ist kleiner als der 'Ansprechpegel' von 10 dB. Der Referenztest wird abgebrochen.


Phase 2: Um die zuletzt angefahrene Stützstelle wird ein Band von 0.30 % gelegt, so dass ein Drittel des Bands vor und zwei Drittel des Bands hinter der zuletzt angefahrenen benutzerdefinierten Stützstelle liegt. Das Band wird in elf neue Stützstellen unterteilt, wobei die einzelnen neu definierten Stützstellen einen Abstand von 0.03 % haben. Das Ventil fährt nacheinander die neu definierten Stützstellen an. Nach Erreichen einer Stützstellen und Ablauf der 'Beruhigungszeit vor Pegelmessung' ermittelt der Leckagesensor den Pegel.

Der Referenztest ist erfolgreich, wenn die Pegeldifferenz zwischen der ersten und letzten der neu definierten Stützstellen größer oder gleich dem eingestellten 'Ansprechpegel' ist.

Phase 2 erfolgreich: Der 'Ansprechpegel' von 10 dB wird zwischen erster und letzter neu definierter Stützstelle erreicht. Der Referenztest wird erfolgreich beendet.

Wird der 'Ansprechpegel' nach Abfahren aller elf neu definierten Stützstellen nicht erreicht, dann ist die Pegeländerung zu gering. In diesem Fall folgt Phase 3.

Phase 2 nicht erfolgreich: Die Pegeldifferenz zwischen erster und letzter neu definierter Stützstelle ist kleiner als der 'Ansprechpegel' von 10 dB. Es folgt Phase 3.

Phase 3: Die benutzerdefinierten Stützstellen aus Phase 1 werden nacheinander angefahren und es wird die zugehörige Pegel-Hub-Kurve aufgenommen. Aus dem Kurvenverlauf lässt sich erkennen, wo sich der Ansprechpunkt in etwa befindet und auf welchen Wert der Ansprechpegel verringert werden muss, damit der Test erfolgreich durchgeführt werden kann.

Parametrierung

- 1. In die Betriebsart 'Hand' wechseln.
- Referenztest parametrieren, vgl. auch Abschnitt "Hinweise zum Bearbeiten der Stützstellen".
- Referenztest starten.
 Der Start des Referenztests wird im Parameter 'Zeitstempel' dokumentiert.
 Der Stellungsregler zeigt im Wechsel "d8" und "tESt" an.

Betrieb > Betriebsart 1)

1. - Gewünschte Betriebsart (Code 0): Hand

Diagnose > Leckagesensor > Referenztest

- 2. Beruhigungszeit vor Pegelmessung: 1 bis 255 s, [5 s]
 - Ansprechpegel: 3 bis 255 dB, [10 dB]
 - Stützstellen bearbeiten: 0.00 bis 100.00 % [1: 0.00 %; 2: 0.10 %; 3: 0.20 %; 4: 0.30 %; 5: 0.40 %; 6: 0.50 %; 7: 0.60 %; 8: 0.70 %; 9: 0.80 %; 10: 0.90 %, 11: 1.00 %]
- 3. Start Referenztest
- Typ 3730/-5: Betrieb > Betriebsart > Stellungsregler (AO, TRD)

i Info

Über den Befehl 'Stopp Referenztest' oder durch Drücken des Dreh-/Druckknopfs wird der Referenztest abgebrochen ('Teststatus' = "Test abgebrochen – manuell"). Nach Abbruch des Referenztests verbleibt der Stellungsregler im Handbetrieb.

In TROVIS-VIEW werden Teststatus und Fortschritt des Referenztests angezeigt. Bei erfolgreichem Referenztest meldet die Anzeige 'Teststatus' "Test erfolgreich beendet".

Hinweise zum Bearbeiten der Stützstellen

- Die benutzerdefinierten Stützstellen müssen von 'Stützstelle 1' bis 'Stützstelle 11' stetig ansteigen.
- Das Ventil f\u00e4hrt die benutzerdefinierten St\u00fctzstellen in Schritten von 0.1 % an. St\u00fctzstellen mit zwei Dezimalstellen werden gerundet.

 Benutzerdefinierte Stützstellen können unter Angabe eines Dateinamens für weitere Anwendungen, z. B. beim Wiederholungstest gespeichert werden.

7.1.1.1 Auswertung

Während des Referenztests ermittelt der Stellungsregler drei Alarmgrenzen, von denen die Alarmgrenzen 2 und 3 für die Alarmeinstellung herangezogen werden können. Die Zuordnung Ventilstellung x [%] und Pegel [dB] wird in TROVIS-VIEW angezeigt:

- Zuordnung 1: Ventilstellung und Pegel bei 0-%-Stellung
- Zuordnung 2: Ventilstellung und Pegel des Messwerts, ab dem die Kurve im Diagramm 'Leckagesensor Referenz' monoton ansteigt
- Zuordnung 3: Ventilstellung und Pegel der letzten Messung

7.1.1.2 Einzelnes Rücksetzen

Der Referenztest (Diagnoseparameter, Messwerte sowie Auswertung) und die Meldung 'Innere Leckage' können über den Befehl 'Rücksetzen 'Leckagesensor Referenztest'' zurückgesetzt werden.

Wird der Testlauf bei vorhandenem Referenztest erneut gestartet, so wird die Auswertung der vorhandene Referenztest überschrieben.

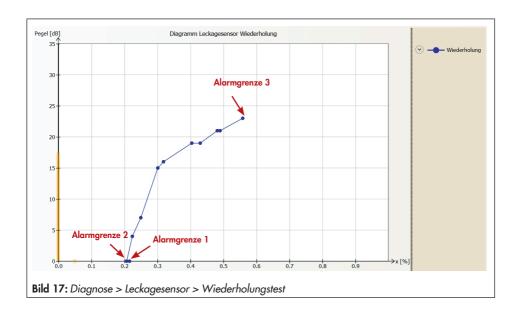
Betrieb > Rücksetzen

- Rücksetzen 'Leckagesensor - Referenztest'

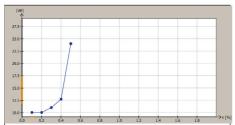
7.1.2 Wiederholungstest

Der Wiederholungstest (Bild 17) dient der Messung des Ansprechverhaltens des Leckagesensors auf die Prozessbedingungen. Einfluss auf das Ansprechverhalten haben Prozessmedium, Eingangsdruck, Ausgangsdruck und Prozessumgebung. Aus den gemessenen Werten werden Alarmgrenzen gesetzt

Der Wiederholungstest entspricht in Durchführung und Auswertung dem im Kapitel 7.1.1 beschriebenen Referenztest. Er sollte nach Einbau des Ventils und nach Inbetriebnahme der Anlage durchgeführt werden

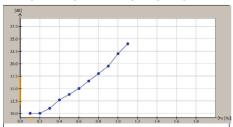

Besteht keine Möglichkeit, den Wiederholungstest durchzuführen, dann können die Alarmgrenzen auch benutzerdefiniert eingestellt werden, vgl. Kapitel 7.1.2.2.

Für die Dauer des Wiederholungstests werden nachfolgend aufgeführte Aktivierungen ausgeschaltet:


- Aktivierung Endlage bei w kleiner
- Aktivierung Rampenfunktion

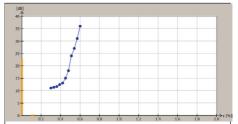
Phase 1: Das Ventil fährt nacheinander die elf benutzerdefinierten Stützstellen an. Nach Erreichen einer Stützstelle und Ablauf der 'Beruhigungszeit vor Pegelmessung' ermittelt der Leckagesensor den Pegel.

Ist die Pegeldifferenz zweier aufeinanderfolgender Stützstellen größer oder gleich dem eingestellten 'Ansprechpegel', werden die nachfolgenden Stützstellen nicht mehr angefahren, es folgt Phase 2.



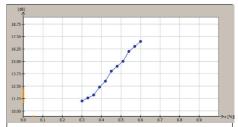
Leckagesensor

Phase 1 erfolgreich: Zwischen den benutzerdefinierten Stützstellen 4 und 5 wird der eingestellte 'Ansprechpegel' von 10 dB überschritten. Es folgt Phase 2.


Wird der 'Ansprechpegel' nach Abfahren aller elf Stützstellen nicht erreicht, wird der Test abgebrochen. Der Abbruch wird mit Zeitstempel protokolliert und der Parameter 'Teststatus' zeigt den Eintrag "Test fehlgeschlagen – Pegeländerung zu gering".

Phase 1 nicht erfolgreich: Die Pegeldifferenz zwischen zwei aufeinanderfolgenden Stützstellen ist kleiner als der 'Ansprechpegel' von 10 dB. Der Wiederholungstest wird abgebrochen.

Phase 2: Um die zuletzt angefahrene Stützstelle wird ein Band von 0.30 % gelegt, so dass ein Drittel des Bands vor und zwei Drittel des Bands hinter der zuletzt angefahrenen Stützstelle liegt. Das Band wird in elf neue Stützstellen unterteilt, wobei die einzelnen neu definierten Stützstellen einen Abstand von 0.03 % haben. Das Ventil fährt


nacheinander die neu definierten Stützstellen an. Nach Erreichen einer Stützstelle und Ablauf der 'Beruhigungszeit vor Pegelmessung' ermittelt der Leckagesensor den Pegel.

Phase 2 erfolgreich: Der 'Ansprechpegel' von 10 dB wird zwischen erster und letzter neu definierter Stützstelle erreicht. Der Wiederholungstest wird erfolgreich beendet.

Der Wiederholungstest ist erfolgreich, wenn die Pegeldifferenz zwischen der ersten und letzten neu definierten Stützstelle größer oder gleich dem eingestellten 'Ansprechpegel' ist.

Wird der 'Ansprechpegel' nach Abfahren aller elf neu definierten Stützstellen nicht erreicht, dann ist die Pegeländerung zu gering. In diesem Fall folgt Phase 3.

Phase 2 nicht erfolgreich: Die Pegeldifferenz zwischen erster und letzter neu definierter Stützstelle ist kleiner als der 'Ansprechpegel' von 10 dB. Es folgt Phase 3.

Phase 3: Die benutzerdefinierten Stützstellen aus Phase 1 werden nacheinander angefahren und es wird die zugehörige Pegel-Hub-Kurve aufgenommen. Aus dem Kurvenverlauf lässt sich erkennen, wo sich der Ansprechpunkt in etwa befindet und auf welchen Wert der Ansprechpegel verringert werden muss, damit der Test erfolgreich durchgeführt werden kann.

Parametrierung

- In die Betriebsart 'Handbetrieb' wechseln
- Wiederholungstest parametrieren, vgl. auch Abschnitt "Hinweise zum Bearbeiten der Stützstellen"
- Wiederholungstest starten.
 Der Start der Wiederholungsmessung wird im Parameter 'Zeitstempel' dokumentiert.
 - Der Stellungsregler zeigt im Wechsel "d9" und "tESt" an.

Betrieb > Betriebsart 1)

1. - Gewünschte Betriebsart (Code 0): Hand

Diagnose > Leckagesensor > Referenztest

2. – Beruhigungszeit vor Pegelmessung: 1 bis 255 s, [5 s]

Diagnose > Leckagesensor > Wiederholungstest

- Ansprechpegel: 3 bis 255 dB, [10 dB]
- Stützstellen bearbeiten: 0.00 bis 100.00 % [1: 0.00 %; 2: 0.10 %; 3: 0.20 %; 4: 0.03 %; 5: 0.04 %; 6: 0.05 %; 7: 0.06 %; 8: 0.07 %; 9: 0.08 %; 10: 0.09 %, 11: 1.00 %]

- 3. Start Wiederholungstest
- Typ 3730-5: Betrieb > Betriebsart > Stellungsregler (AO, TRD)

i Info

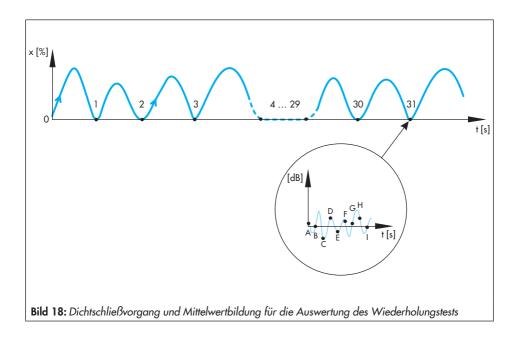
Über den Befehl 'Stopp Wiederholungstest' oder durch Drücken des Dreh-/Druckknopfs wird der Wiederholungstest abgebrochen ('Teststatus' = "Test abgebrochen – manuell"). Nach Abbruch des Wiederholungstests verbleibt der Stellungsregler im Handbetrieb.

In TROVIS-VIEW werden Teststatus und Fortschritt des Wiederholungstests angezeigt. Bei erfolgreichem Wiederholungstest meldet die Anzeige 'Teststatus' "Test erfolgreich beendet"

Hinweise zum Bearbeiten der Stützstellen

- Die Werte von benutzerdefinierter Stützstelle 1 bis Stützstelle 11 müssen monoton ansteigen.
- Das Ventil f\u00e4hrt die benutzerdefinierten St\u00fctzstellen in Schritten von 0.1 % an. St\u00fctzstellen mit zwei Dezimalstellen werden gerundet.
- Benutzerdefinierte Stützstellen können unter Angabe eines Dateinamens für weitere Anwendungen, z. B. bei einem weiteren Wiederholungstest gespeichert werden.

7.1.2.1 Auswertung


Während des Wiederholungstests ermittelt der Stellungsregler drei Alarmgrenzen, von denen die Alarmgrenzen 2 und 3 für die Alarmeinstellung herangezogen werden können. Die Zuordnung Ventilstellung x [%] und Pegel [dB] wird in TROVIS-VIEW angezeigt:

- Zuordnung 1: Ventilstellung und Pegel bei 0-%-Stellung
- Zuordnung 2: Ventilstellung und Pegel des Messwerts, ab dem die Kurve im Diagramm 'Leckagesensor Wiederholung' monoton ansteigt
- Zuordnung 3: Ventilstellung und Pegel der letzten Messung

7.1.2.2 Alarmeinstellungen

Mit Hilfe des angeschlossenen und durch Referenz- und Wiederholungstest in Betrieb genommenen Leckagesensors kann der Stellungsregler Hinweise auf eine innere Leckage des Sitzes geben. Hierzu ermittelt er im Regelbetrieb den Pegel im Dichtschließen des Ventils. Die Überwachung der Leckage erfolgt automatisch im laufenden Betrieb.

Als Alarmgrenzen können die ermittelten Alarmgrenzen des Referenztests, des Wiederholungstests oder benutzerdefinierte Alarmgrenzen gewählt werden. Bei benutzerdefinierter Vorgabe der Alarmgrenzen müssen die Alarmgrenzen von 'Alarmgrenze 1' bis 'Alarmgrenze 3' stetig ansteigen.

Während des Regelbetriebs werden die Pegelmittelwerte im Dichtschließvorgang mit den Alarmgrenzen verglichen. Welcher Pegelmittelwert zum Vergleich herangezogen wird, kann im Parameter 'Alarmauslösung' eingestellt werden:

- Gemittelter Pegelwert im Dichtschließen:
 Der Mittelwert aus dem aktuellen Pegel
 und den letzten vier Pegeln des aktuellen
 Dichtschließvorgangs wird für die Überwachung herangezogen (Bild 18: Dichtschließvorgang 31 und Pegel E bis I).
- Mittelwert des aktuellen/letzen Dichtschließens: Der Mittelwert aller Pegel aus dem aktuellen Dichtschließvorgang wird für die Überwachung herangezogen (Bild 18: Dichtschließvorgang 31 und Pegel A bis I).
- Gleitender Mittelwert aus Kurzzeithistogramm: Der Mittelwert aus den letzten dreißig Pegeln der Kurzzeitbeobachtung (vgl. Kapitel 7.2) wird für die Überwachung herangezogen (Bild 18: Dichtschließvorgang 2 bis Dichtschließvorgang 31 mit allen Pegeln).
- Gleitender Mittelwert aus Langzeithistogramm: Der Mittelwert aus allen Pegeln der Langzeitbeobachtung (vgl. Kapitel 7.3) wird für die Überwachung herangezogen (Bild 18: Dichtschließvorgang 1 bis Dichtschließvorgang 31 mit allen Pegeln).

Mit der Einstellung "Keine Alarmauslösung" wird die Alarmauslösung deaktiviert.

Parametrierung

- 1. Alarme parametrieren.
- 2. Statusmeldungen klassifizieren, vgl. Kapitel 7 1 2 3

Diagnose > Leckagesensor > Wiederholungstest

- Alarmauslösung: [Keine Alarmauslösung], Mittelwert des aktuellen/letzen Dichtschließens, Gemittelter Pegelwert im Dichtschießen, Gleitender Mittelwert aus Kurzzeithistogramm, Gleitender Mittelwert aus Langzeithistogramm
 - Vorgabe Alarmgrenze ¹⁾: [Werksvorgabe (Referenztest], Alarmgrenzen aus Wiederholungstest, Benutzerdefinierte Alarmgrenzen

Typ 3730-2/-3/-4/-5 (1.5x) und 3731-3:

Einstellungen > Stellungsregler > Fehlerüberwachung > Statusklassifikation > Erweitert > Innere Leckage

2. – Alarmgrenze 2 überschritten:

 $[\otimes]$, \diamondsuit , \bigotimes , Ψ , \bigwedge

- Alarmgrenze 3 überschritten:

[⊗], ♦, ⊗, ♥, ⚠

Typ 3730-5 (1.6x) und 3731-5:

Einstellungen > Stellungsregler > Diagnosekonfiguration > Klassifikation

2. – Innere Leckage: [⊗], ♦, ⊗, ♥, ♠

3) Bei Vorgabe der Alarmgrenze "Benutzerdefiniert" wird empfohlen, die korrekte Einstellung der Alarmgrenzen nach einer Betriebszeit von ein bis drei Monaten anhand der gemessenen Werte im Diagramm "Pegelbeobachtung" (vgl. Kapitel 7.4) zu überprüfen.

7.1.2.3 Überwachung

Übersteigt der ermittelte Pegelmittelwert die 'Alarmgrenze 2' generiert der Stellungsregler eine Meldung 'Innere Leckage' entsprechend der Statusklassifikation 'Alarmgrenze 2 überschritten'

Übersteigt der ermittelte Pegelmittelwert die 'Alarmgrenze 3' generiert der Stellungsregler eine Meldung 'Innere Leckage' entsprechend der Statusklassifikation 'Alarmgrenze 3 überschritten'.

Diagnose > Statusmeldungen > Erweitert

- Innere Leckage

7.1.2.4 Einzelnes Rücksetzen

Der Wiederholungstest (Diagnoseparameter, Messwerte sowie Auswertung) und die Meldung 'Innere Leckage' können über den Befehl 'Rücksetzen 'Leckagesensor Wiederholungstest'' zurückgesetzt werden.

Wird der Testlauf bei vorhandenem Wiederholungstest erneut gestartet, so wird die Auswertung der vorhandene Wiederholungstest überschrieben.

Betrieb > Rücksetzen

Rücksetzen 'Leckagesensor – Wiederholungstest'

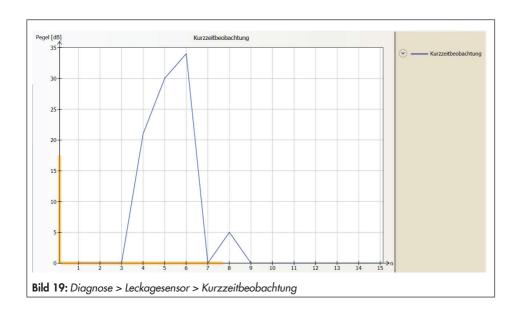
7.2 Kurzzeitbeobachtung

Die Kurzzeitbeobachtung erlaubt eine Auskunft über kurzfristige Änderungen des Pegels im Dichtschließen.

Die Datenaufnahme erfolgt unabhängig von der eingestellten Betriebsart im Hintergrund, eine Aktivierung ist nicht erforderlich.

Der Leckagesensor nimmt den Pegel auf, wenn der Dichtschließvorgang verlassen wird oder wenn sich der Pegel um 2 dB ändert. Aus dem aufgenommenen Pegel und den letzten vier ermittelten Pegeln wird ein Mittelwert gebildet. Weicht dieser Mittelwert um den Betrag 'Ansprechpegel bei Kurzzeitbeobachtung' vom letzten Mittelwert der Kurzzeitbeobachtung ab, wird er als neuer

Mittelwert in der Kurzzeitbeobachtung gespeichert.


Angezeigt wird der zuletzt in die Kurzzeitbeobachtung aufgenommene 'Pegelmittelwert Kurzzeitbeobachtung'.

Der Stellungsregler speichert Pegel- und Hubmittelwerte in einem Ringpuffer mit einer Speichertiefe von 30 Werten mit Zuordnung zum Betriebsstundenzähler. Die gespeicherten Messwerte können im Verzeichnis Messdatenauswertung eingesehen werden.

Parametrierung

Diagnose > Leckagesensor > Kurzzeitbeobachtung

Ansprechpegel bei Kurzzeitbeobachtung:
 3 bis 255 dB, [3 dB]

7.2.1 Einzelnes Rücksetzen

Die Kurzzeitbeobachtung (Diagnoseparameter, Messwerte und Auswertung) kann über den Befehl 'Rücksetzen 'Leckagesensor Kurzzeitbeobachtung'' zurückgesetzt werden. Gleichzeitig werden die Daten im Verzeichnis Messdatenauswertung zurückgesetzt.

Betrieb > Rücksetzen

 Rücksetzen 'Leckagesensor - Kurzzeitbeobachtung'

7.3 Langzeitbeobachtung

Um einen Pegeltrend über eine lange Zeit feststellen zu können, enthält die Langzeitbeobachtung alle in der Kurzzeitbeobachtung abgelegten Mittelwerte seit dem letzten Rücksetzen:

- Langzeitmittelwert': Über die 'Anzahl der aufgenommenen Mittelwerte' gemittelter Schallpegel
- 'Anzahl der aufgenommenen Mittelwerte'

Die Datenaufnahme erfolgt unabhängig von der eingestellten Betriebsart im Hintergrund, eine Aktivierung ist nicht erforderlich.

7.3.1 Einzelnes Rücksetzen

Die Messwerte der Langzeitbeobachtung werden über den Befehl 'Rücksetzen 'Leckagesensor Langzeitbeobachtung' zurückgesetzt.

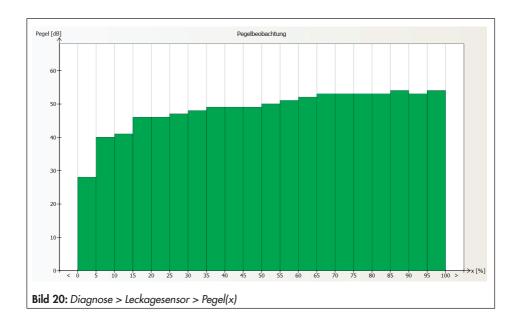
Betrieb > Rücksetzen

 Rücksetzen 'Leckagesensor - Langzeitbeobachtung'

7.4 Pegelbeobachtung

Die Pegelbeobachtung wird als Histogramm dargestellt und zeigt die Häufigkeit der aufgenommenen Pegelwerte innerhalb von fest vorgegebenen Intervallklassen der Ventilstellungen x.

Der Leckagesensor ermittelt sekündlich den Schallpegel und ordnet ihn einem vorgegebenen Ventilstellungsintervall (Klasse) zu. Die Ventilstellungsintervalle werden grafisch in Form eines Balkendiagramms angezeigt.


Die Datenaufnahme erfolgt unabhängig von der eingestellten Betriebsart im Hintergrund, eine Aktivierung ist nicht erforderlich.

7.4.1 Einzelnes Rücksetzen

Die Messwerte der Pegelbeobachtung werden über den Befehl 'Rücksetzen 'Leckagesensor Pegelbeobachtung' zurückgesetzt.

Betrieb > Rücksetzen

Rücksetzen 'Leckagesensor - Pegelbeobachtung'

8 Binäreingang

8.1 Typ 3730-2/3 und 3731-3

Die nachfolgende Beschreibung gilt nur für Stellungsregler, die mit einem optionalen Binäreingang ausgestattet sind.

Mit dem optionalen Binäreingang können unterschiedliche Funktionen aktiviert werden:

- [Übertragung Schaltzustand]
 Der Schaltzustand des Binäreingangs wird protokolliert.
- Setze Vor-Ort-Schreibschutz
 Nach der ersten Initialisierung kann ein
 Vor-Ort-Schreibschutz gesetzt werden.
 Solange der Binäreingang aktiv ist, können am Stellungsregler keine Einstellungen geändert werden. Es kann keine neue Initialisierung gestartet werden. Die Konfigurationsfreigabe über Code 3 ist nicht aktiv
- Start Teilhubtest (PST)
 Der Stellungsregler startet einmalig einen Teilhubtest. Der Test wird mit den Einstellungen aus Code 49 - d2 bis Code 49 d9 durchgeführt, vgl. Kapitel 5.4.
- Sicherheitssollwert anfahren
 Ein Auf/Zu-Ventil fährt den vorgegebenen Sicherheitssollwert an, wenn sich der
 Stellungsregler im Automatikbetrieb befindet. In den Betriebsarten Handbetrieb
 oder Sicherheitsstellung erfolgt keine Aktion
- Wechsel zwischen AUTO/HAND
 Der Stellungsregler wechselt vom Automatikbetrieb in den Handbetrieb bzw. umgekehrt. Befindet sich der Stellungs

- regler in der Betriebsart Sicherheitsstellung erfolgt keine Aktion.
- Start Datenlogger
 Mit Aktivierung des Binäreingangs wird
 der Datenlogger gestartet, vgl. Kapi tel 4.2.
- Rücksetzen Diagnose
 Aktive Test- und Beobachterfunktionen
 werden abgebrochen und die Diagnose daten werden einmalig zurückgesetzt.
- Externes Magnetventil angeschlossen
 Es wird erkannt und protokolliert, dass ein externes Magnetventil angeschlossen ist.
- Leckagesensor
 Der Fehler "Externe Leckage bald zu erwarten" wird gesetzt. Der Fehler wird zurückgesetzt, wenn die Flankensteuerung auf "Aus" schaltet. In der Protokollierung bleibt die Meldung erhalten.

i Info

Der optionale Binäreingang lässt sich nur über die Bediensoftware TROVIS-VIEW und über die Parameter der DD konfigurieren. Als Standard wird bei geschlossenem Schalter der Schaltzustand übertragen.

Einstellungen > Stellungsregler > Optionen

Aktion bei aktivem Binäreingang: [Übertragung Schaltzustand], Setze Vor-Ort-Schreibschutz, Start Teilhubtest (PST), Sicherheitssollwert anfahren, Wechsel zwischen AUTO/HAND, Start Datenlogger, Rücksetzen Diagnose, Externes Magnetventil angeschlossen, Leckagesensor

- Flankensteuerung Binäreingang: [Ein: Schalter offen/Aus: Schalter geschlossen], Ein: Schalter geschlossen/Aus: Schalter offen
- Sicherheitssollwert: 0.0 bis 100.0 %, [50.0 %]
- Konfiguration Binäreingang: [Aktiv], Passiv

8.2 Typ 3730-4

Die Konfiguration des optionalen Binäreingangs BE2 erfolgt über PROFIBUS PA im Parameter CONFIG_BINARY_INPUT_2 des Physical Blocks, vgl. ► KH 8384-4.

8.3 Typ 3730-5 und 3731-5

Binäreingang BE1

Mit dem standardmäßig implementierten Binäreingang BE1 können folgende Funktionen aktiviert werden:

- 5-30 V DC
 - Der Stellungsregler besitzt standardmäßig einen Kontakteingang zur Auswertung binärer Spannungssignale (Klemmen 87 und 88). Der DI1 FB wertet den Zustand des Kontakts aus und stellt diesen über OUT_D zur Verfügung.
- Internes Magnetventil
 In dieser Einstellung wird der aktuelle
 Schaltzustand des optionalen internen
 Magnetventils abgefragt und über
 OUT_D zur Verfügung gestellt. Dabei
 entspricht der Wert 0 einem nicht ge schalteten Magnetventil (U < 15 V DC)
 und der Wert 1 einem geschalteten Magnetventil (U > 19 V DC).

- Diskrete Ventilposition
 In dieser Einstellung wird die aktuelle diskrete Ventilstellung über OUT_D zur Verfügung gestellt. Die Zuordnung der Werte ist dabei wie folgt:
 - 0 Gerät nicht initialisiert
 - Ventil geschlossen
 - 2 Ventil geöffnet
 - 3 Ventil in Zwischenstellung
- Sammelstatus

In dieser Einstellung wird der aktuelle Sammelstatus nach NAMUR-Empfehlung NE 107 über OUT_D zur Verfügung gestellt. Dabei ist die Zuordnung der Statusmeldungen zu dem diskreten Wert wie folgt:

- 0 keine Meldung
- Wartungsbedarf
- 2 Wartungsanforderung
- 3 Ausfall
- 7 Funktionskontrolle

Einstellungen > Binäreingang 1 (DI1, TRD)

- Auswahl Binäreingang 1: [5–30 V DC], Internes Magnetventil, Diskrete Ventilposition, Sammelstatus
- Zuordnung TRD/DI: [Mit DI1 TRD verbunden (1)], Nicht mit TRD verbunden (0)

Binäreingang BE2

Mit dem optionalen Binäreingang BE2 können folgende Funktionen aktiviert werden:

Erdfreier Kontakt
 Der Stellungsregler besitzt optional einen
 Binäreingang zur Auswertung eines po tentialfreien Kontakts (Klemmen 85 und
 86). Der DI2 FB wertet den Zustand des

Binäreingang

Kontakts aus und stellt diesen über OUT_D zur Verfügung.

Bei angeschlossenem Drucksensor (Leckagesensor) wird dessen Schaltzustand als Diagnosemeldung im Parameter XD_ERROR_EXT des AO TRD signalisiert und in die Protokollierung übernommen. Hierzu muss im Parameter CONFIG_BINARY_INPUT2 die Option "Actively Open – Ext.Leak.Sens." oder "Actively Closed – Ext.Leak.Sens." angewählt werden. Außerdem wird der Schaltzustand des Binäreingangs im Parameter BINARY_INPUT2 des AO TRD ausgegeben.

- Internes Magnetventil
 In dieser Einstellung wird der aktuelle
 Schaltzustand des optionalen internen
 Magnetventils abgefragt und über
 OUT_D zur Verfügung gestellt. Dabei
 entspricht der Wert 0 einem nicht ge schalteten Magnetventil (U < 15 V DC)
 und der Wert 1 einem geschalteten Magnetventil (U > 19 V DC).
- Diskrete Ventilposition
 In dieser Einstellung wird die aktuelle diskrete Ventilstellung über OUT_D zur Verfügung gestellt. Die Zuordnung der Werte ist dabei wie folgt:
 - Gerät nicht initialisiert
 - 1 Ventil geschlossen
 - 2 Ventil geöffnet
 - 3 Ventil in Zwischenstellung
- Sammelstatus

In dieser Einstellung wird der aktuelle Sammelstatus nach NAMUR-Empfehlung NE 107 über OUT_D zur Verfügung gestellt. Dabei ist die Zuordnung der Statusmeldungen zu dem diskreten Wert wie folgt:

- 0 keine Meldung
- Wartungsbedarf
- 2 Wartungsanforderung
- 3 Ausfall
- 7 Funktionskontrolle
- Sammelststatus und VST

Der Stellungsregler startet einmalig einen Teilhubtest. Der Test wird mit den Einstellungen aus Code 49 - d2 bis Code 49 d9 durchgeführt, vgl. Kapitel 5.4.

Zusätzlich wird der Sammelstatus nach NAMUR-Empfehlung NE 107 über OUT_D zur Verfügung gestellt. Dabei ist die Zuordnung der Statusmeldungen zu dem diskreten Wert wie folgt:

- 0 keine Meldung
- Wartungsbedarf
- 2 Wartungsanforderung
- 3 Ausfall
- 7 Funktionskontrolle

Der logische Zustand des Binäreingangs wird mit dem Parameter 'Einstellung Binäreingang 2' (CONFIG_BINARY_INPUT_2) vorgegeben.

Einstellungen > Binäreingang 2 (DI2, TRD)

- Auswahl Binäreingang 2: [Erdfreier Kontakt], Internes Magnetventil, Diskrete Ventilposition, Sammelstatus, Sammelstatus und VST
- Einstellung Binäreingang 2: [Nicht ausgewertet], Aktiv offen, Aktiv geschlossen, Aktiv offen Leckagesensor, Aktiv geschlossen Leckagesensor, Start PST
- Zuordnung TRD/DI: [Mit DI2 TRD verbunden (2)], Nicht mit TRD verbunden (0)

9.1 Codeliste

		rameter – Anzeigen, erte [Werkseinstellung]	Beschreibung
Mit * v	erse/	ehene Codes müssen zu	Konfiguration erst mit Code 3 freigegeben werden.
48*	d0	Aktuelle Temperatur -55.0 bis 125.0	Betriebstemperatur [°C] im Inneren des Stellungsreglers (Genauigkeit ±3 %) Nur Anzeige
	d1	Minimale Temperatur [20]	Niedrigste, jemals aufgetretene Betriebstemperatur [°C] unter 20 °C Nur Anzeige
	d2	Maximale Temperatur [20]	Höchste, jemals aufgetretene Betriebstemperatur [°C] über 20 °C Nur Anzeige
	d3	Anzahl Nullpunkt-Abgleiche	Anzahl der Nullpunktabgleiche seit der letzten Initialisierung Nur Anzeige
	d4	Anzahl Initialisierungen	Anzahl der jeweils durchgeführten Initialisierungen seit dem letzten Rücksetzen
			Nur Anzeige
	d5	Nullpunktgrenze 0.0 bis 100.0 % des Nennbereichs, [5.0 %]	Grenze für die Nullpunktüberwachung Dient zur Fehlerüberwachung der Nullpunktverschiebung.
	d6	Sammelstatus	Komprimierter Sammelstatus, wird aus den einzelnen Stati gebildet. OK in Ordnung C Wartungsbedarf CR Wartungsanforderung B Ausfall I Funktionskontrolle (Typ 3730-4/-5) S Außerhalb der Spezifikation (Typ 3730-2/-3) Nur Anzeige
	d7	Referenzlauf starten [No], YES, ESC	Auslösen eines Referenzlaufs für die Funktionen Stellsignal y Stationär (d1) und Stellsignal y Hysterese (d2) Ein Aktivieren des Referenzlaufs ist nur im Handbetrieb möglich, da der komplette Stellbereich des Ventils durchfahren wird.
	d8	Aktivierung EXPERT+	ab Firmwareversion 1.5x ohne Funktion

		ameter – Anzeigen, rte [Werkseinstellung]	Beschreibung
Mit * v	versehene Codes müssen zu Konfiguration erst mit Code 3 freigegeben werden.		
48*	Dic	gnoseparameter h	
	h0	Init mit Referenzlauf [No], YES, ESC	Initialisierung mit Referenzlauf (Beim Referenzlauf werden die Referenzkurven für die Testfunktionen Stellsignal y Stationär (d1) und Stellsignal y Hysterese (d2) aufge- nommen.)
	h1	Ergebnis Referenzlauf [No], YES	No Es wurde kein Referenzlauf durchgeführt. YES Die Referenzkurven für die Testfunktionen Stellsignal y Stationär (d1) und Stellsignal y Hysterese (d2) wurden erfolgreich aufge- nommen. Nur Anzeige
	h2	– frei –	
	h3	Auto Reset diAG [0] bis 365 Tage	Nach einer einstellbaren Zeitspanne werden die Diagnosedaten gemäß Code 36 - diAG automatisch zurückgesetzt. Beispiel: Prozessuntypisches Anlagen-Anfahrverhalten soll nicht in die Gesamtdiagnose eingehen.
	h4	Restzeit Auto Reset diAG	Verbleibende Zeit bis zum automatischen Zurücksetzen der Diagno- sedaten gemäß Code 48 – h3
400			Nur Anzeige
49*	_		st (FST) · Anwendungsart
	Α	Teilhubtest (PST)	
	A0	Teilhubtest starten [No], YES, ESC	Betriebsart und Testmodus PST müssen auf "MAN" gesetzt sein.
	A1	Zeit bis zum nächsten PST-Autotest	Verbleibende Zeit [d_h] bis zur Durchführung des nächsten Teilhubtests (PST). Gilt nur im Testmodus PST Auto Nur Anzeige
	A2	Gewünschter Test- modus PST Auto, [Man], ESC	Schaltet den zeitabhängigen automatischen Teilhubtest ein (PST Auto) oder aus (PST Man).
	А3	Autotestzeit	Gewünschte Zeit [h] für die Wiederholung des Teilhubtests (PST)

Code Nr.	Parameter – Anzeigen, Werte [Werkseinstellung]	Beschreibung
Mit * v	versehene Codes müssen zu	Konfiguration erst mit Code 3 freigegeben werden.
49*	A4 Statusklassifikation PST-Status	C Wartungsbedarf OK Keine Meldung CR Wartungsanforderung b Ausfall S Außerhalb der Spezifikation Nur Anzeige
	A5 Empfohlene Mindest-Abtastzeit	Abtastzeit [s], mit der die komplette Sprungantwort im Diagramm zur Verfügung steht. Nur Anzeige
	A6 – frei –	
	A7 Δy-Überwachung Referenzwert	Die Ventilposition Sprungstart (Code 49 - d2) und Sprungende (Code 49 - d3) werden mit bestimmten Stellimpulsen durchfahren. Die Differenz dieser Stellimpulse bildet das Δy [1/s]. Der Δy-Überwachung Referenzwert gilt für die eingestellten Sprungwerte (Code 49 - d2 und Code 49 - d3) und für die gewählten Rampenzeiten (Code 49 - d5 und Code 49 - d6). Eine Änderung dieser Werte bedingt eine neue Ermittlung des Δy-Überwachung Referenzwerts.
	A8 Aktivierung Δy-Über-	Schaltet die Δy-Überwachung ein oder aus.
	wachung [No], YES, ESC	Schaller die Zy-Ober wachting ein oder dus.
	A9 Δy-Überwachungswert 0 bis 100 %, [0 %] ^{11, 21, 31} [10 %] ^{41, 51, 61}	Anteil [%] vom gesamten Stellimpulsbereich von 1 bis 10000 1/s (Beispiel: 10 % = 1000 1/s) Wenn sich die Stellsignaländerung Δy um diesen Betrag von dem Δy-Überwachung Referenzwert unterscheidet, wird der Teilhubtest abgebrochen.
	d Sprungparameter Teilh	ubtest (PST)
	d1 - frei -	
	d2 Sprungstart 0.0 bis 100.0 %, [95.0] % ^{1), 6)} [100.0 %] ^{2), 3), 4), 5)}	Startwert zur Durchführung der Sprungantwort
		Typ 3730-2 31 Typ 3731-3 51 Typ 3730-5 Typ 3730-3 41 Typ 3730-4 61 Typ 3731-5

Code Nr.	Parameter – Anzeigen, Werte [Werkseinstellung]		Beschreibung
Mit * v	Nit * versehene Codes müssen zu		Konfiguration erst mit Code 3 freigegeben werden.
49*	d3	Sprungende 0.0 bis 100.0 %, [90.0 %] ^{11, 21, 31} [95 %] ^{41, 5)}	Endwert zur Durchführung der Sprungantwort
	d4	Aktivierung Rampen- funktion [No] ^{1), 2), 3), 5)} [YES] ⁴⁾	Schaltet die Rampenfunktion ein oder aus.
	d5	Rampenzeit (steigend) 0 bis 9999 s, [15 s] ^{1), 2)} [45 s] ^{4), 5)} , [60 s] ³⁾	Rampenzeit für 0 bis 100 % Hub (steigend) der Rampenfunktion Die Initialisierung gibt einen sinnvollen Wert vor, der nicht unter- schritten werden sollte.
	d6	Rampenzeit (fallend) 0 bis 9999 s, [15 s] ^{1], 2]} [45 s] ^{4], 5]} , [600 s] ^{3]}	Rampenzeit für 100 bis 0 % Hub (fallend) der Rampenfunktion Die Initialisierung gibt einen sinnvollen Wert vor, der nicht unter- schritten werden sollte.
	d7	Beruhigungszeit vor Testbeginn 1.0 bis 240.0 s, [10.0 s] ^{1), 2)} [2 s] ^{4), 5)} , [1 s] ³⁾	Wartezeit vor Testbeginn, damit der Sprungstartwert sicher erreicht werden kann.
	d8	Wartezeit nach Sprung 1.0 bis 240.0 s ^{1], 2], 3]} , 2.0 bis 100.0 s ^{4]} , 0.1 bis 240.0 s ^{5]} , [2.0 s]	Wartezeit nach dem ersten Sprung, bis zweiter Sprung gestartet wird
	d9	Abtastzeit 0.2 bis 250.0 s, [0.2 s] 1], 2], 4], 5], [0.8 s] 3]	Abtastzeit der Sprungantwortmessung
	E	Abbruchbedingungen	Teilhubtest (PST)
	EO	Aktivierung x-Überwa- chung [No] ^{1], 2], 3]} [YES] ^{4], 5]}	Schaltet die x-Überwachung ein oder aus.

Code Nr.	Parameter – Anzeigen, Werte [Werkseinstellung]		Beschreibung
Mit * v	* versehene Codes müssen zu		Konfiguration erst mit Code 3 freigegeben werden.
49*	E1	x-Überwachungswert -10.0 bis 110.0 % vom Gesamthub, [0.0 %] ^{11, 2], 3)} [85.0 %] ^{4), 5], 6)}	Der Test wird abgebrochen, sobald die Ventilstellung den eingestellten Wert – unterschreitet (Sprungende < Sprunganfang). – überschreitet (Sprungende > Sprunganfang).
	E2	– frei –	
	E3	– frei –	
	E4	– frei –	
	E5	Aktivierung PST Tole- ranzband-Überwa- chung [No], YES	Schaltet die PST Toleranzband-Überwachung ein oder aus.
	E6	PST Toleranzband 0.1 bis 100.0 %, [5.0 %]	Der Test wird abgebrochen, sobald das Sprungende (Code 49 - d3) um diesen Prozentwert überschritten wird.
	E7	Max. Testdauer Anwendervorgabe 30 bis 25000 s, [30 s] ^{1], 4], 5], 6]} [90 s] ^{2], 3]}	Maximale Testdauer, nachdem der Test auf jeden Fall abgebrochen wird.
	F	Testinformationen Teilh	ubtest (PST) · Nur Anzeige
	F0	Kein Test vorhanden	Kein Test vorhanden oder der Test wurde manuell abgebrochen.
	F1	Test OK	
	F2	x-Abbruch	Der Test wurde durch die Funktion x-Abbruch beendet.
	F3	y-Abbruch	Der Test wurde durch die Funktion y-Abbruch beendet.
	F4	Toleranzband über- schritten	Der Test wurde abgebrochen. Es sind x-Werte außerhalb des Toleranzbands aufgetreten.
	F5	Max. Testzeit über- schritten	Der Test wurde nach der maximalen Testzeitvorgabe nicht abgeschlossen und abgebrochen.
	F6	Test man. abgebrochen	Der Test wurde durch den Anwender abgebrochen.

³⁾ Typ 3731-3 ⁴⁾ Typ 3730-4 Typ 3730-5 Typ 3731-5

Typ 3730-2 Typ 3730-3

		rameter – Anzeigen, erte [Werkseinstellung]	Beschreibung
Mit *	verse	ehene Codes müssen zu	Konfiguration erst mit Code 3 freigegeben werden.
49*	F7	Messdatenspeicher voll	Das maximale Speichervolumen des Messdatenspeichers wurde erreicht. Nach 100 Messwerten je Messgröße stoppt die Aufzeichnung, der Test wird jedoch bis zum Ende fortgesetzt.
	F8	Int. Magnetventil	Der Test wurde durch Auslösen des Magnetventils abgebrochen.
	F9	Zuluftdruck/Reibung	Der Test wurde aufgrund von zu wenig Zuluftdruck oder einer zu hohen Reibung abgebrochen.
	h	Anwendungsart Ventil	
	h0	Anwendungsart [No], YES, ESC	nicht Typ 3730-4 No Regelventil YES Auf/Zu-Ventil
			Abhängig von der eingestellten Anwendungsart zeigt der Stellungs- regler ein abweichendes Verhalten in der Betriebsart AUTO und Un- terschiede in den Diagnosefunktionen.
	h1	Arbeitspunkt	nur Typ 3730-2/-3, 3731-3
		0.0 bis [100.0 %] der Ventilstellung	Diese Ventilstellung wird angefahren, sobald der Führungsgröße die Grenze Arbeitspunkt (Code 49 – h5) überschreitet.
	h2		nur Typ 3730-2/-3, 3731-3
		lung 0.0 bis 20.0 % der Führungsgröße, [12.5 %]	Bei Unterschreitung dieser Grenze bewegt sich das Ventil in die Si- cherheitsstellung (SAFE).
	h3	Untere Grenze Testaus-	nur Typ 3730-2/-3, 3731-3
		lösung [25.0 % der Führungs- größe]	Zwischen der Sicherheitsgrenze und der unteren Testgrenze bleibt das Ventil in seiner zuletzt gültigen Stellung. Zwischen der unteren und der oberen Testgrenze wird nach 6 Sekunden ein Teilhubtest (PST) durchgeführt.
			Nur Anzeige
	h4	Obere Grenze Testaus- lösung [50.0 % der Führungs- größe]	nur Typ 3730-2/-3, 3731-3 Zwischen der oberen Testgrenze und der Arbeitspunktgrenze bleibt das Ventil in seiner zuletzt gültigen Stellung. Nur Anzeige

		rameter – Anzeigen, erte [Werkseinstellung]	Beschreibung
Mit * v	verse	ehene Codes müssen zu	Konfiguration erst mit Code 3 freigegeben werden.
49*	h5	Grenze Arbeitspunkt	nur Typ 3730-2/-3, 3731-3/-5
		55.0 bis 100.0 % der Führungsgröße, [75.0 %]	Bei Überschreiten der Arbeitspunktgrenze wird der Arbeitspunkt angefahren.
	h6	– frei –	
	h7		nur Typ 3730-2/-3, 3731-3/-5
		[0.6] bis 30.0 s	Zeitgrenze für die Differenz zwischen Referenzwert und aktuell aufgenommenem Wert. Sie bestimmt, ab welcher Differenz eine Meldung generiert wird.
	h8	Grenzwert Hubaus- wertung 0.1 bis 100.0 % der Ventilstellung, [0.3 %]	nur Typ 3730-2/-3, 3731-3/-5 Hubgrenze für die Differenz zwischen Referenzwert und aktuell aufgenommenem Wert. Sie bestimmt, ab welcher Differenz eine Meldung generiert wird.
	h9	Statusklassifikation Auf/Zu	C Wartungsbedarf OK Keine Meldung CR Wartungsanforderung b Ausfall S Außerhalb der Spezifikation Nur Anzeige

9.1.1 PROFIBUS-Parameter (Typ 3730-4)

	Parameter – Anzeigen, Werte [Werkseinstellung]	Beschreibung
Mit * v	versehene Codes müssen zu	Konfiguration erst mit Code 3 freigegeben werden.
48*	FO Firmware Rev. Kommunikation	
	F1 Binäreingang 1	0 nicht aktiv 1 aktiv
	F2 Binäreingang 2	0 nicht aktiv 1 aktiv

	Parameter – Anzeigen, Werte [Werkseinstellung]	Beschreibung
Mit * v	versehene Codes müssen zu	Konfiguration erst mit Code 3 freigegeben werden.
48*	F3 Zähler Geräteanläufe	
	F4 Zähler Reset Kommunikation	
	F5 Zähler Reset Regelung	
	F6 Zähler Reset Busanschaltung	
	F7 Slave Zustand	0 undefiniert 1 wait_cfg 2 wait_prm 3 data_exchg
	AO Function Block A	
	A0 Target Mode	Gewünschte Betriebsart 1)
	A1 Actual Mode	Aktuelle Betriebsart 1)
	A2 SP Value	Anzeige des Sollwerts (Führungsgröße) und des Status
	A3 SP Status	
	A4 Readback Value	Anzeige der aktuellen Position und des Status
	A5 Readback Status	
	A6 Out Value	Anzeige der Stellgröße und des Status
	A7 Out Status	
	A8	
	A9 Simulate	Stellungsregler-Simulation O gesperrt 1 freigegeben
	Transducer Blöcke AO, DI1,	DI2 t
	t0 Target Mode AO Trd	Gewünschte Betriebsart 1)
	t1 Actual Mode AO Trd	Aktuelle Betriebsart 1)

6 I	I B				
Nr.	We	rameter – Anzeigen, erte [Werkseinstellung]	Beschreibung		
Mit * v	verse	ehene Codes müssen zu	Konfiguration erst mit Code 3 freigegeben werden.		
48*	t2	Final_Position_ Value. Value	Anzeige der aktuellen Ventilposition bezogen auf den Arbeitsbereich und des Status		
	t3	Final_Position_ Value. State			
	t4	AO Feedback Value	Anzeige der aktuellen Ventilposition [OUT_SCALE] und des Status		
	t5	AO Feedback State			
	t6	AO Final_Value.Value	Anzeige des Stellwertes [FVR] und des Status		
	t7	AO Final_Value.State			
	t8	AO Final_Position_ Value. Value	Anzeige der aktuellen Ventilposition [FVR] und des Status		
	t9	AO Final_Position_ Value. State			
	Res	source Block S			
	S0	Resource target Mode	Gewünschte Betriebsart 1)		
	S 1	Resource actual Mode	Aktuelle Betriebsart 1)		
	DII	Function Block 1			
	10	Target Mode DI1	Gewünschte Betriebsart 1)		
	11	Actual Mode DI1	Aktuelle Betriebsart 1)		
	12	DI1 Trd PV_D.Value	Anzeige der diskreten Eingangsgröße und des Status		
	13	DI1 Trd PV_D.State			
	14	DI1 Fb Target Mode	Gewünschte Betriebsart FB		
	15	DI1 Fb Actual Mode	Aktuelle Betriebsart FB		
	16	DI1 Fb OUT_D.Value	Anzeige der diskreten Ausgangsgröße und des Status		
	17	DI1 Fb OUT_D.State			
	18	DI1 FSAFE_VAL_D	Defaultwert, wenn der Sensor einen Fehler meldet		
	19	Simulate	Simulation		
	DI2	DI2 Function Block L			
	LO	Target Mode DI2	Gewünschte Betriebsart 1)		
	· · · · · · · · · · · · · · · · · · ·				

	Parameter – Anzeigen, Werte [Werkseinstellung]	Beschreibung
Mit *	versehene Codes müssen zu	Konfiguration erst mit Code 3 freigegeben werden.
48*	L1 Actual Mode DI2	Aktuelle Betriebsart 1)
	L2 DI2 Trd PV_D.Value	A
	L3 DI2 Trd PV_D.State	Anzeige der diskreten Eingangsgröße und des Status
	L4 DI2 Fb Target Mode	Gewünschte Betriebsart FB
	L5 DI2 Fb Actual Mode	Aktuelle Betriebsart FB
	L6 DI2 Fb OUT_D.Value	A
	L7 DI2 Fb OUT_D.State	Anzeige der diskreten Ausgangsgröße und des Status
	L8 DI2 FSAFE_VAL_D	Defaultwert, wenn der Sensor einen Fehler meldet
	L9 Simulate	Simulation

1) Anzeige aktuelle/gewünschte Betriebsart:

Betriebsart	angezeigter Wert (Display)
Auto	8
MAN	16
Externe Kaskade RCAS	2
Außer Betrieb O/S	128

9.1.2 FOUNDATION™-Fieldbus-Parameter (Typ 3730-5, 3731-5)

	Parameter – Anzeigen, Werte [Werkseinstellung]	Beschreibung
Mit * v	versehene Codes müssen zu	Konfiguration erst mit Code 3 freigegeben werden.
48*	FO Firmware Rev. Kommunikation	
	F1 Binäreingang 1	0 nicht aktiv = NO 1 aktiv = YES
	F2 Binäreingang 2	0 nicht aktiv = NO 1 aktiv = YES
	F3 Simulate	Aktivierung des Simulationsmodus

	Parameter – Anzeigen, Werte [Werkseinstellung]	Beschreibung			
Mit * v	ersehene Codes müssen zu Konfiguration erst mit Code 3 freigegeben werden.				
48*	AO Function Block				
	A0 Target Mode	Gewünschte Betriebsart			
	A1 Actual Mode	Aktuelle Betriebsart			
	A2 CAS_IN Value	Anzeige des von einem vorgeschalteten Funktionsblock übernomme-			
	A3 CAS_IN Status	nen analogen Sollwerts und des Status			
	A4 SP Value	Annaire des Sallyserts and deren Status			
	A5 SP Status	-Anzeige des Sollwerts und deren Status			
	A6 Out Value	Anzeige der Stellgröße und des Status			
	A7 Out Status	Anzeige der Stellgroße und des Status			
	A8 Block Err	Anzeige des aktuellen Blockfehlers			
	PID-Funktionsblock (PID)				
	PO Target Mode	Gewünschte Betriebsart			
	P1 Actual Mode	Aktuelle Betriebsart			
	P2 CAS_IN Value	Anzeige des von einem vorgeschalteten Funktionsblock übernomme-			
	P3 CAS_IN Status	nen analogen Sollwerts und des Status			
	P4 SP Value	Anzeige des Sollwerts und deren Status			
	P5 SP Status	Anzeige des soliwens und deren sidios			
	P6 Out Value	Anzeige der Stellgröße und des Status			
	P7 Out Status	Arizeige der Sieligfobe und des Sidius			
	P8 Block Err	Anzeige des aktuellen Blockfehlers			
	Transducer Blöcke A0, DI1	, DI2			
	t0 Target Mode AO Trd	Gewünschte Betriebsart			
	t1 Actual Mode AO Trd	Aktuelle Betriebsart			
	t2 Transducer State	Zustand des Übertragungsblocks			
	t3 Block Error AO Trd	Anzeige des aktuellen Blockfehlers			
	t4 Target Mode DI1 Trd	Gewünschte Betriebsart			

Code Nr.		imeter – Anzeigen, te [Werkseinstellung]	Beschreibung
Mit * \	ersel	hene Codes müssen zu	Konfiguration erst mit Code 3 freigegeben werden.
48*	t5 /	Actual Mode DI1 Trd	Aktuelle Betriebsart
	t6 I	Block Error DI1 Trd	Anzeige des aktuellen Blockfehlers
	t7	Target Mode DI2 Trd	Gewünschte Betriebsart
	t8 /	Actual Mode DI2 TRD	Aktuelle Betriebsart
	t9 I	Block Error DI1	Anzeige des aktuellen Blockfehlers
	Resc	ource Block	
	S0 I	Resource target Mode	Gewünschte Betriebsart
	S1	Resource actual Mode	Aktuelle Betriebsart
	S2 I	Resource Block Error	Anzeige des aktuellen Blockfehlers
	DI1	Function Block	
	10	Target Mode DI1	Gewünschte Betriebsart
	11 /	Actual Mode DI1	Aktuelle Betriebsart
	I2	Field_Val_D.Value	Anzeige der diskreten Eingangsgröße und des Status
	13	Field_Val_D.State	Alizeige dei diskielen Eingdingsgroße ond des Sidios
	14 (OUT_D.Value	Anzeige der diskreten Ausgangsgröße und des Status
	15 (OUT_D.State	Alizeige der diskreien Ausgungsgrobe und des sidius
	16	Block Error	Anzeige des aktuellen Blockfehlers
	DI2	Function Block	
	LO T	Target Mode DI1	Gewünschte Betriebsart
	L1 /	Actual Mode DI1	Aktuelle Betriebsart
	L2	Field_Val_D.Value	Anzeige der diskreten Eingangsgröße und des Status
	L3	Field_Val_D.State	Alizeige dei diskieleli Elliguligsgione olid des oldios
	L4 (OUT_D.Value	Anzeige der diskreten Ausgangsgröße und des Status
	L5 (OUT_D.State	Anzeige der diskreien Ausgungsgroße und des sidius
	L6 I	Block Error	Anzeige des aktuellen Blockfehlers

9.2 Fehlermeldungen und Abhilfe

Meldung	Mögliche Ursache	Abhilfe	klassifi- zierbar	einzeln rück- setzbar
Diagnose > Statusmeldunger	1			
Regelkreis (Code 57)	Antrieb ist mechanisch blockiert. Anbau des Stellungsreglers hat sich nachträglich verschoben. Zuluftdruck reicht nicht aus.	Anbau prüfen.Zuluftdruck prüfen.	• [�]	-
Nullpunkt (Code 58)	Anbaulage oder Anlenkung des Stellungsreglers ist verrutscht. Ventilgarnitur, besonders bei weich dichtenden Kegeln, ist verschlissen.	Ventil und Anbau des Stellungsreglers prüfen. Nullpunktabgleich durchführen. Bei Nullpunktabweichungen über 5 % wird eine Neuinitialisierung empfohlen.	• [�]	•
Autokorrektur (Code 59)	Fehler im Datenbereich des Reglers.	-	_	•
Fataler Fehler (Code 60)	In den sicherheitsrelevanten Daten wurde ein Fehler entdeckt. Ursache können EMV-Störungen sein. Das Stellventil wird in die Sicherheitsstellung gefahren.	-	-	-
w zu klein (Code 63)	Der Sollwert (w) ist kleiner 3,7 mA.	Sollwert (w) prüfen. Gegebe- nenfalls den Stromgeber nach unten begrenzen, damit keine Werte unter 3,7 mA ausgegeben werden können.	(⊗I	-
Wegintegral überschritten	Das 'Absolute Wegintegral' hat den 'Grenzwert Weginteg- ral' überschritten.	-	· [�]	-
Temperaturüberschreitung	-	-	· (<u>⊗</u>]	_
Erweiterte Diagnose (Code 79)	Meldungen der erweiterten Di- agnose EXPERTplus stehen an, vgl. Diagnose > Statusmel- dungen > Erweitert	-	-	

Meldung	Mögliche Ursache	Abhilfe	klassifi- zierbar	einzeln rück- setzbar
Führungsgröße außer Bereich	Der Sollwert ist kleiner 4 mA oder größer 20 mA.	Gegebenenfalls den Strom- geber nach unten (4 mA) und/oder oben (20 mA) be- grenzen.	-	-
x-Signal (Code 62)	Messwerterfassung für Antrieb ausgefallen. Leitplastik defekt.	Stellungsregler zur Reparatur an SAMSON schicken.	· [�]	_
i/p-Wandler (Code 64)	Der Stromkreis des i/p-Umformers ist unterbrochen.	Stellungsregler zur Reparatur an SAMSON schicken.	_	-
Hardware (Code 65)	Hardwarefehler Das Stellventil wird in die Si- cherheitsstellung gefahren.	Fehler quittieren und Be- triebsart 'Automatik' wählen. Wenn nicht erfolgreich, Initi- alisierung zurücksetzen und Stellungsregler neu initialisie- ren.	· [⊗]	•
Datenspeicher (Code 66)	Der Datenspeicher kann nicht mehr beschrieben werden. Das Stellventil wird in die Si- cherheitsstellung gefahren.	Fehler quittieren und Be- triebsart 'Automatik' wählen. Wenn nicht erfolgreich, Initi- alisierung zurücksetzen und Stellungsregler neu initialisie- ren.	-	-
Kontrollrechnung (Code 67)	Fehler beim Hardwareregler	Fehler quittieren. Ist das nicht möglich, Stellungsregler zur Reparatur an SAMSON schi- cken.	· (<u>⊗</u>)	•
Programmladefehler (Code 77)	Es wurde ein Programm geladen, das nicht dem Stellungsregler entspricht. Das Stellventil wird in die Si- cherheitsstellung gefahren.	Strom unterbrechen und Ge- rät erneut anlaufen lassen. Ist das nicht möglich, Stellungs- regler zur Reparatur an SAMSON schicken.	-	-
x > Bereich (Code 50)	Stift falsch gesetzt. Bei NAMUR-Anbau: Winkel verrutscht oder Abtaststift liegt nicht im Schlitz der Mitnehmerplatte auf. Mitnehmerplatte falsch angebaut.	Anbau und Stiftposition prüfen. Stellungsregler neu initialisieren.	• [�]	•
Delta x < Bereich (Code 51)	Stift falsch gesetzt. Falscher Hebel eingebaut. Druckgrenze zu niedrig gewählt.	Anbau und Druckgrenze prüfen. Stellungsregler neu initialisieren.	· [�]	•

Meldung	Mögliche Ursache	Abhilfe	klassifi- zierbar	einzeln rück- setzbar
Anbau (Code 52)	Falscher Hebel eingebaut. Zuluffdruck zu niedrig, die gewünschte Stellung kann nicht angefahren werden. Bei der Initialisierung mit der Initialisierungsart Nennbereich (NOM) konnte der Nennbereich nicht erreicht werden.	Anbau und Zuluftdruck prüfen. Stellungsregler neu initialisieren.	· [�]	٠
Initialisierungszeit über- schritten (Code 53)	Der Initialisierungslauf dauert zu lange (> 90 s), der Regler geht in die vor- herige Betriebsart zurück. Zuluftdruck zu niedrig. An- trieb zu langsam. Stellungsregler findet keine festen Endanschläge.	Zuluftdruck prüfen. Volumenverstärker installieren. Endanschläge einstellen. Stellungsregler neu initialisieren.	· [�]	٠
Laufzeit unterschritten (Code 55)	Die bei der Initialisierung er- mittelten Laufzeiten des An- triebs sind so gering (< 0,3 s), dass sich der Stellungsregler nicht optimal einstellen kann.	Die Volumendrossel im Ausgang des Stellungs- reglers aktivieren. Stellungsregler neu initia- lisieren.	· [�]	•
Stiftposition/Sicherheits- schalter (Code 56)	Bei der Initialisierungsart Nennbereich (NOM) oder beim Ersatzabgleich (SUB) wurde die Stiftposition nicht eingegeben.	Stiftposition und Nennbereich eingeben. Stellungsregler neu initialisieren.	• [�]	•
	Der Schalter (ATO/ATC) ist defekt.	Stellungsregler zur Reparatur an SAMSON schicken.		
Keine Notlaufeigenschaft (Code 76)	Der Stellungsregler hat bei der Initialisierung erkannt, dass der Antrieb keinen gesteuerten Not-Modus zulässt. Bei einem Fehler in der Wegmessung entlüftet der Stellungsregler den Ausgang Output bzw. A1 bei doppeltwirkenden Antrie- ben.	Nur Information, Keine weiteren Maßnahmen notwendig.	· (X)	-
Referenzlauf abgebrochen (Code 81)	Fehler bei der automatischen Aufnahme der Referenzkurven 'Stellsignal y Stationär (d1)' oder 'Stellsignal y Hysterese (d2)' im Zuge der Initialisie- rung	Kontrolle und ggf. neuen Re- ferenzlauf durchführen.	[�]	-

Meldung	Mögliche Ursache	Abhilfe	klassifi- zierbar	einzeln rück- setzbar
Regelparameter (Code 68)	Fehler in den Regelparametern	Fehler quittieren. Wenn nicht erfolgreich, Initialisierung zu- rücksetzen und Stellungsreg- ler neu initialisieren.	· [�]	•
Potiparameter (Code 69)	Fehler der Parameter des Digi- talpotentiometers	Fehler quittieren. Wenn nicht erfolgreich, Initialisierung zu- rücksetzen und Stellungsreg- ler neu initialisieren.	· [�]	•
Abgleichparameter (Code 70)	Fehler in den Daten des Pro- duktionsabgleichs.	Stellungsregler zur Reparatur an SAMSON schicken.	• [�]	_
Allgemeine Parameter (Code 71)	Fehler in Parametern, die für die Regelung nicht kritisch sind.	Fehler quittieren.	• [�]	•
Interner Gerätefehler 1 (Code 73)	Interner Gerätefehler	Stellungsregler zur Reparatur an SAMSON schicken.	• [�]	-
HART-Parameter (Code 74); nur Typ 3730-3/3731-3	Fehler in den HART®-Parame- tern, die für die Regelung nicht kritisch sind	Fehler quittieren und ggf. Neueinstellung der Parameter.	• [�]	•
Optionsparameter (Code 78)	Fehler in den Optionsparametern	Stellungsregler zur Reparatur an SAMSON schicken.	• [�]	-
Diagnoseparameter (Code 80)	Fehler, die für die Regelung nicht kritisch sind	Fehler quittieren. Ggf. neuen Referenzlauf durchführen.	• [�]	•
Diagnose > Statusmeldunge	n > Erweitert			
Zuluftdruck	Der Zuluftdruck hat sich verändert. Der Zuluftdruck ist nicht ausreichend. Der Zuluftdruck ist stark ausgelastet.	Zuluftdruck prüfen.	• [⊗]	Kap. 4.6.2, Kap. 5.1.2
Trend Stellbereich	Der Arbeitsbereich hat sich in Richtung Schließstellung/ma- ximale Öffnung verschoben.	Arbeitsbereich überdenken.	· (⊗)	• Kap. 4.3.2
Leckage Pneumatik	Eine Leckage in der Pneumatik ist vorhanden.	Pneumatische Anbauten und Verbindungen auf Dichtheit prüfen.	· [<u> </u>	• Kap. 4.6.2, Kap. 5.1.2
Beschränkung Stellbereich	 Der Stellbereich ist nach unten/oben beschränkt. Das Ventil klemmt (Keine Änderung möglich). 	Pneumatische Anbauten und Verbindungen auf Dichtheit prüfen. Zuluftdruck prüfen. Kegelstange auf mechanische Fremdeinwirkung prüfen.	⊗	• Kap. 4.4.2

Meldung	Mögliche Ursache	Abhilfe	klassifi- zierbar	einzeln rück- setzbar
Trend Endlage	Der Endlagenverlauf ist monoton steigend/fallend. Der Endlagenverlauf ist al- ternierend.	Kegel und Sitz prüfen.	· (🖄)	• Kap. 4.8.2
Mech. Verbindung Stellungsregler/Stellventil	 Der Hub wird nicht optimal übertragen. Die mech. Verbindung ist lose. Der Stellbereich ist eingeschränkt. 	Anbau prüfen.	(⊗)	• Kap. 4.4.2
Stellbereich	Der Stellbereich ist vorwiegend nahe der Schließstellung/maximalen Öffnung. Der Stellbereich ist vorwiegend in der Schließstellung/maximalen Öffnung.	Arbeitsbereich überdenken.	(⊗)	• Kap. 4.3.2
Reibung	 Die Reibung über den ganzen Stellbereich deutlich größer/kleiner. Die Reibung ist über einen Teilbereich deutlich größer/kleiner. 	Stopfbuchse prüfen.	· (⊗)	• Kap. 4.7.2, Kap. 5.2.2
Antriebsfedern	Die Federsteifigkeit ist reduziert (Ausfall). Die Federvorspannung ist reduziert. Die Antriebsfedern sind stark ausgelastet.	Federn im Antrieb prüfen.	· (⊗)	Kap. 4.6.2, Kap. 5.1.2
Innere Leckage	Eine der Alarmgrenzen 2 oder 3 ist überschritten. Eine innere Leckage ist vorhanden.	Kegel und Sitz prüfen.	· (⊗)	Kap. 7.1.2.4 Kap. 4.4.2
Externe Leckage	Eine externe Leckage ist vor- handen oder bald zu erwar- ten. Eine externe Leckage ist bald	Stopfbuchse prüfen.	· (🖄	Kap. 4.5.2
Teilhubtest/Vollhubtest	zu erwarten. Der Teilhubtest (PST) oder der Vollhubtest (FST) wurde nicht erfolgreich beendet.	Testabbruchbedingungen prüfen, vgl. Kapitel 5.4 und Kapitel 5.5.	· (⊗)	Kap. 4.7.2 • Kap. 5.4.4, Kap. 4.5.2

Meldung	Mögliche Ursache	Abhilfe	klassifi- zierbar	einzeln rück- setzbar
Auf/Zu	Die Losbrechzeit oder Laufzeit weicht um den 'Grenzwert Zeitauswertung' vom Referenzwert ab. Die Hubendstellung weicht um den 'Grenzwert Hubstellung' vom Referenzwert ab. Die Hubendstellung kann nicht erreicht werden.	Pneumatische Anbauten und Verbindungen auf Dichtheit prüfen. Zuluftdruck prüfen. Kegelstange auf mechanische Fremdeinwirkung prüfen.	⊗i	• Kap. 4.1.3

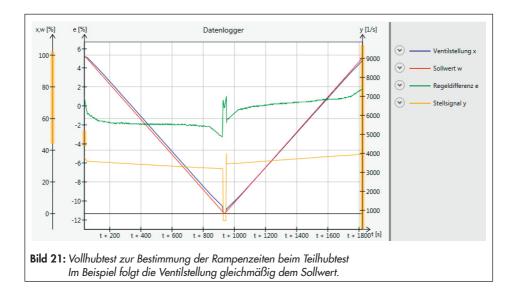
9.3 Netzausfallsicher gespeicherte Diagnose-Datenpunkte

Netzausfallsichere Speicherung:	Direkte Speicherung bei Änderung	Zyklische Speicherung (24 h)
Beobachterfunktionen		
Auf/Zu	'Grenzwert Zeitauswertung', 'Grenzwert Hubauswertung'	Auswertung
	Referenzauswertung	
Datenlogger	'Auswahl', 'Triggerauswahl', 'Abtastzeit', 'Triggerwertvorgabe', 'Triggerband', 'Trig- gerflanke', 'Pretriggerzeit', 'Triggerung durch Sammelstatus'	
Histogramm Ventilstellung x		Messwerte
Kurzzeitbetrachtung	Abtastzeit Kurzzeithistogramm	
Histogramm Regeldifferenz e		Messwerte
Kurzzeitbetrachtung	Abtastzeit Kurzzeithistogramm	
Histogramm Zyklenzähler		Messwerte
Kurzzeitbetrachtung		
Diagramm Stellsignal y Stationär		Messwerte
Kurzzeitbetrachtung		Messwerte
Diagramm Stellsignal y Hysterese (d5)	'Start Testlauf', 'Aktivierung Zeitabstand', 'Zeitl. Mindestabstand', 'Toleranzband der Hysterese'	Messwerte
Kurzzeitbetrachtung		
Untere Endlage	Messwerte bei Änderung	

Netzausfallsichere Speicherung:	Direkte Speicherung bei Änderung	Zyklische Speicherung (24 h)
Testfunktionen		
Stellsignal y Stationär (d1)	Werte des Referenzlaufs	
	'Referenzzeitstempel'	
Stellsignal y Hysterese (d2)	Werte des Referenzlaufs	
	Referenzzeitstempel	
Statische Kennlinie (d3)		
Teilhubtest (d4)	'Testmodus PST', 'Sprungstart', 'Sprungende', 'Sprungtoleranzgrenze', 'Aktivierung Rampenfunktion', 'Rampenzeit (steigend)', 'Rampenzeit (fallend)', 'Beruhigungszeit vor Testbeginn', 'Wartezeit nach Sprung', 'Abtastzeit', 'Maximale Testdauer Anwendervorgabe', 'Anzahl der Sprünge', 'Aktivierung x-Überwachungswert', 'Aktivierung delta-y-Überwachung', 'delta-y-Überwachung', 'Haktivierung PST-Toleranzband-Überwachung', 'PST-Toleranzband' delta-y-Überwachung, Testanzahl Nessdatenauswertung, Testanzahl	
Vollhubtest (d6)	'Sprungtoleranzgrenze', 'Aktivierung Rampenfunktion', 'Rampenzeit (steigend)', 'Rampenzeit (fallend)', 'Beruhigungszeit vor Testbeginn', 'Wartezeit nach Sprung', 'Abtastzeit', 'Maximale Testdauer Anwendervorgabe', 'Anzahl der Sprünge', 'Maximale Losbrechzeit', 'Erlaubte Zeit bis Schließstellung', 'Aktivierung 'Erlaubte Zeit bis Schließstellung', 'Aktivierung 'Erlaubte Zeit bis Schließstellung', 'Aktivierung 'Erlaubte Zeit bis Schließstellung', 'Aktivierung', Testanzahl	
Allgemein		
Angaben der Antriebs- und Ventildaten	Ja	
Protokollierung	Ja	
Klassifizierung der Statusmeldungen	Ja	

9.4 Ermittlung von Teilhubtest-Rampenzeiten

Sinnvolle Rampenzeiten für den Teilhubtest können durch einen Vollhubtest (FST) ermittelt werden.


• HINWEIS

Zur Durchführung des Vollhubtests Kapitel 5.5 beachten.

i Info

Im Nachfolgenden ist die Aufnahme des Teilhubtests im Datenlogger beschrieben. Die Typ 3730-5 (1.6x) und 3731-5 verfügen nicht über die Datenloggerfunktion. Hier kann der Testverlauf über den Trend-Viewer-Funktion von TROVIS-VIEW aufgenommen werden, vgl. ► FB 6661

- 1. FST-Diagnoseparameter wie folgt einstellen:
 - 'Sprungtoleranzgrenze' = 2.0 % (WE)
 - 'Aktivierung Rampenfunktion' = Ja (WE)
 - 'Rampenzeit steigend' = 900 s
 - 'Rampenzeit fallend' = 900 s
 - 'Beruhigungszeit vor Testbeginn' = 10 s
 - 'Wartezeit nach Sprung' = 4.0 s
 - 'Abtastzeit' = 'Empfohlene Mindestabtastzeit'
- 2. 'Abtastzeit' des Datenloggers auf 0.2 s einstellen und Datenlogger starten ('Funktionsweise' = Permanent) vgl. Kapitel 4.2.
- 3. Vollhubtest starten und direkt zur Anzeige des Datenloggers wechseln.
- 4. Nach Beenden des Vollhubtests, Datenlogger stoppen und Datensatz speichern.
- 5. Datenlogger auswerten: Wenn die Ventilstellung gleichmäßig dem Sollwert folgt, dann können die eingestellten Rampenzeiten für den Teilhubtest verwendet werden. Ist dies nicht der Fall, dann sollte der Vollhubtest mit geänderten Rampenzeiten wiederholt werden, bis die Ventilstellung direkt dem Sollwert folgt (Bild 21).

Abkürzungsverzeichnis

e Regeldifferenz

p_{out} Stelldruckps Zuluftdruck

x Istwert = Ventilstellung

x₀ Ventilstellung im Dichtschließen

w Sollwert, Führungsgröße

ATC Air to close

ATO Air to open

BE Binäreingang

BSZ Betriebsstundenzähler

FST Full Stroke Test = Vollhubtest

INIT Initialisierung

MGV Magnetventil

NE NAMUR-Empfehlung

NP Nullpunkt

PST Partial Stroke Test = Teilhubtest

ZWE Zwangsentlüftung

